

TIG STICK

WeldSkill 205AC/DC

OPERATING MANUAL

P/N: W1008205

 Manual No: 0-5555

WE APPRECIATE YOUR BUSINESS!

Congratulations on your new CIGWELD product. We are proud to have you as our customer and will strive to provide you with the best service and reliability in the industry. This product is backed by our extensive warranty and world-wide service network.

This Operating Manual has been designed to instruct you on the correct use and operation of your CIGWELD product. Your satisfaction with this product and its safe operation is our ultimate concern. Therefore please take the time to read the entire manual, especially the Safety Precautions. They will help you to avoid potential hazards that may exist when working with this product.

We have made every effort to provide you with accurate instructions, drawings, and photographs of the product(s) while writing this manual. However errors do occur and we apologize if there are any contained in this manual.

Due to our constant effort to bring you the best products, we may make an improvement that does not get reflected in the manual. If you are ever in doubt about what you see or read in this manual with the product you received, then check for a newer version of the manual on our website or contact our customer support for assistance.

YOU ARE IN GOOD COMPANY!

The Brand of Choice for Contractors and Fabricators Worldwide.

CIGWELD is a Market Leading Brand of Arc Welding Products for ESAB. We are a mainline supplier to major welding industry sectors in the Asia Pacific and emerging global markets including; Manufacturing, Construction, Mining, Automotive, Engineering, Rural and DIY.

We distinguish ourselves from our competition through market-leading, dependable products that have stood the test of time. We pride ourselves on technical innovation, competitive prices, excellent delivery, superior customer service and technical support, together with excellence in sales and marketing expertise.

Above all, we are committed to develop technologically advanced products to achieve a safer working environment for industry operators.

M

WARNING

Read and understand this entire Manual and your employer's safety practices before installing, operating, or servicing the equipment.

While the information contained in this Manual represents the Manufacturer's best judgement, the Manufacturer assumes no liability for its use.

CIGWELD WeldSkill 205AC/DC Welding Inverters Instruction Manual Number 0-5555 for: Part Numbers W1008205

Published by:
CIGWELD Pty Ltd
CIGWELD An ESAB Brand
71 Gower Street,
Preston, Victoria, Australia, 3072
+61 3 9474 7400 +61 3 9474 7391

www.cigweld.com.au

Copyright 2019 CIGWELD Pty Ltd

All rights reserved.

Reproduction of this work, in whole or in part, without written permission of the publisher is prohibited.

The publisher does not assume and hereby disclaims any liability to any party for any loss or damage caused by any error or omission in this Manual, whether such error results from negligence, accident, or any other cause.

For Printing Material Specification refer to document 47x1915.

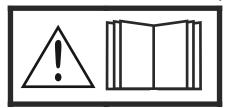
Publication Date: 15-04-2019

Revision Date:

Record the following information for Warranty purposes:

Where Purchased:	
Purchase Date:	
Equipment Serial #:	

Be sure this information reaches the operator. You can get extra copies through your supplier.


CAUTION

These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equipment, we urge you to read our booklet, "Precautions and Safe Practices for Arc Welding, Cutting, and Gouging," Booklet 0-5407. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these instructions. If you do not fully understand these instructions, contact your supplier for further information. Be sure to read the Safety Precautions before installing or operating this equipment.

USER RESPONSIBILITY

This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the Authorized Distributor from whom it was purchased.

This equipment or any of its parts should not be altered without the prior written approval of the manufacturer. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a service facility designated by the manufacturer.

READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.

PROTECT YOURSELF AND OTHERS!

DECLARATION OF CONFORMITY

According to

The Arc Welding Power Source Directive AS 60974.1-2006 (equivalent to IEC 60974-1 Ed. 2.1)

The EMC Directive IEC 60974-10:2014 published on 06 February 2014

Type of equipment

Welding Inverter Power Source

Type designation etc.

Welding Performance

2019

Brand name or trade mark

Cigweld

Manufacturer or his authorised representative established within the EEA Name, address, telephone No:

Cigweld Pty Ltd 71 Gower Street Preston, Victoria, Australia, 3072 Phone: +61 3 9474 7400

The following harmonised standard in force within the EEA has been used in the design:

AS 60974.1-2006, Arc Welding Equipment - Welding Power Sources (IEC 60974-1:2000, MOD) IEC 60974-10-2014, Arc Welding Equipment - Part 10: Electromagnetic Compatibility (EMC) Requirements AS 1674.2-2007, Safety in Welding and Allied Processes AS/NZS 3760-2010: In-service Safety Inspection and Testing of Electrical Equipment

Additional Information: Restrictive use, Class A equipment, intended for use in location other than resid

By signing this document, the undersigned declares as manufacturer, or the manufacturer's authorised representative established within the EEA, that the equipment in question complies with the safety requirements stated above.

Date	Signature	Position
03-01-2019	Mal 1/ Ken Konopa	Vice President, Global Welding

TABLE OF CONTENTS

SECTION 1: ARC WEI	DING SAFETY INSTRUCTIONS AND WARNINGS	1-1
1.01	Arc Welding Hazards	1-1
1.02		
SECTION 2: Introdu	JCTION	2-1
2.01	How To Use This Manual	2-1
2.02	Equipment Identification	2-1
2.03	Receipt Of Equipment	2-1
2.04	Symbol Chart	2-2
2.05	Description	2-3
2.06	User Responsibility	2-3
2.07	Packaged Item	2-3
2.08	Transporting Methods	2-3
2.09	Duty Cycle	2-4
2.10	Specifications	2-5
2.11	Optional Accessories	2-6
SECTION 3:	ATION	3-1
3.01		
3.02		
3.03		
3.04		
3.05		
3.06	3 1 3	
3.07		
3.08		
3.09		
3.10	~	
3.11		
SECTION 4: OPERATI	ON	4-1
4.01	Overview	4-1
4.02		
SECTION 5:	W) WELDING	5-1
5.01	,	
5.01	· · ·	
5.02	. , , ,	
5.03	3 3	
5.04		
5.06		
5.00	114 (417 W) Wolding 1 Toblottlo	0 11

TABLE OF CONTENTS

SECTION 6: STICK (MM/	AW) WELDING	6-1
6.01	Setup For STICK (MMAW) Welding	6-1
6.02	STICK Programming Mode	6-2
6.03	Arc Welding Electrodes	6-3
6.04	Types of Electrodes	
6.05	Size of Electrode	6-5
6.06	Storage of Electrodes	6-5
6.07	Electrode Polarity	6-5
6.08	Effects of Arc Welding Various Materials	6-5
6.09	Arc Welding Practice	6-5
6.10	Welding Position	6-5
6.11	Joint Preparations	6-6
6.12	Arc Welding Technique	6-7
6.13	The Welder	6-7
6.14	Striking the Arc	6-8
6.15	Arc Length	6-8
6.16	Rate of Travel	6-8
6.17	Making Welded Joints	6-8
6.18	Distortion	6-10
6.19	The Cause of Distortion	6-11
6.20	Overcoming Distortion Effects	6-12
6.21	Welding Problems	6-14
SECTION 7: Routine Si	ERVICE REQUIREMENTS AND POWER SOURCE PROBLEMS	7-1
7.01	Routine Maintenance & Inspection	7-1
7.02	Cleaning the Welding Power Source	
7.03	Basic Troubleshooting	
7.04	Welding Power Source Problems	
SECTION 8: KEY	SPARE PARTS	8-1
8.01	WeldSkill 205AC/DC Key Spare Parts	8-1
8.02	TIG Torch 8m (P/N W4014605) Key Spare Parts	
APPENDIX: WELD	OSKILL 205AC/DC CIRCUIT DIAGRAM	A-1
	ED WARRANTY TERMS EDULE – WELDSKILL 205AC/DC INVERTERS	

SECTION 1: ARC WELDING SAFETY INSTRUCTIONS AND WARNINGS

WARNING

PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACE-MAKER WEARERS KEEP AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.

Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not strictly observe all safety rules and take precautionary actions.

Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and training before using this equipment. Some of these practices apply to equipment connected to power lines; other practices apply to engine driven equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld.

Safe practices are outlined in the Australian Standard AS1674.2-2007 entitled: Safety in welding and allied processes Part 2: Electrical. This publication and other guides to what you should learn before operating this equipment are listed at the end of these safety precautions. **HAVE ALL INSTALLATION, OPERATION, MAINTENANCE, AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE.**

1.01 Arc Welding Hazards

WARNING ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- 1. Do not touch live electrical parts.
- 2. Wear dry, hole-free insulating gloves and body protection.
- 3. Insulate yourself from work and ground using dry insulating mats or covers.
- Disconnect input power or stop engine before installing or servicing this equipment. Lock input power disconnect switch open, or remove line fuses so power cannot be turned on accidentally.
- 5. Properly install and ground this equipment according to its Owner's Manual and national, state, and local codes.

- Turn off all equipment when not in use. Disconnect power to equipment if it will be left unattended or out of service.
- 7. Use fully insulated electrode holders. Never dip holder in water to cool it or lay it down on the ground or the work surface. Do not touch holders connected to two welding machines at the same time or touch other people with the holder or electrode.
- 8. Do not use worn, damaged, undersized, or poorly spliced cables.
- 9. Do not wrap cables around your body.
- 10. Ground the workpiece to a good electrical (earth) ground.
- 11. Do not touch electrode while in contact with the work (ground) circuit.
- 12. Use only well-maintained equipment. Repair or replace damaged parts at once.
- 13. In confined spaces or damp locations, do not use a welder with AC output unless it is equipped with a voltage reducer. Use equipment with DC output.
- 14. Wear a safety harness to prevent falling if working above floor level.
- 15. Keep all panels and covers securely in place.

0-5555 1-1 GENERAL INFORMATION

WARNING

ARC RAYS can burn eyes and skin; NOISE can damage hearing.

Arc rays from the welding process produce intense heat and strong ultraviolet rays that can burn eyes and skin. Noise from some processes can damage hearing.

 Use a Welding Helmet or Welding Faceshield fitted with a proper shade of filter (see ANSI Z49.1 and AS 1674 listed in Safety Standards) to protect your face and eyes when welding or watching.

- 2. Wear approved safety glasses. Side shields recommended.
- 3. Use protective screens or barriers to protect others from flash and glare; warn others not to watch the arc.
- 4. Wear protective clothing made from durable, flame-resistant material (wool and leather) and foot protection.
- 5. Use approved ear plugs or ear muffs if noise level is high.
- 6. Never wear contact lenses while welding.

Recommended Protective Filters for Electric Welding		
Description of Process	Approximate Range of Welding Current in Amps	Minimum Shade Number of Filter(s)
	Less than or equal to 100	8
Manual Matal Ara Walding a sourced	100 to 200	10
Manual Metal Arc Welding - covered - electrodes (MMAW)	200 to 300	11
electrodes (IVIIVIAVV)	300 to 400	12
	Greater than 400	13
	Less than or equal to 150	10
Gas Metal Arc Welding (GWAW)	150 to 250	11
(MIG) other than Aluminium and	250 to 300	12
Stainless Steel	300 to 400	13
	Greater than 400	14
Gas Metal Arc Welding (GMAW)	Less than or equal to 250	12
(MIG) Aluminium and Stainless Steel	250 to 350	13
	Less than or equal to 100	10
Gas Tungsten Arc Welding (GTAW)	100 to 200	11
(TIG)	200 to 250	12
(114)	250 to 350	13
	Greater than 350	14
	Less than or equal to 300	11
Flux-cored Arc Welding (FCAW) -with	300 to 400	12
or without shielding gas.	400 to 500	13
	Greater than 500	14
Air - Arc Gouging	Less than or equal to 400	12
	50 to 100	10
Plasma - Arc Cutting	100 to 400	12
	400 to 800	14
Plasma - Arc Spraying	_	15
	Less than or equal to 20	8
Dlooma Ara Walding	20 to 100	10
Plasma - Arc Welding	100 to 400	12
	400 to 800	14
Submerged - Arc Welding	<u> </u>	2(5)
Resistance Welding	_	Safety Spectacles or eye shield

Refer to standard AS/NZS 1338.1:1992 for comprehensive information regarding the above table.

WeldSkill 205AC/DC

WARNING

FUMES AND GASES can be hazardous to your health.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- 1. Keep your head out of the fumes. Do not breath the fumes.
- 2. If inside, ventilate the area and/or use exhaust at the arc to remove welding fumes and gases.
- 3. If ventilation is poor, use an approved air-supplied respirator.
- 4. Read the Material Safety Data Sheets (MSDSs) and the manufacturer's instruction for metals, consumables, coatings, and cleaners.
- 5. Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Shielding gases used for welding can displace air causing injury or death. Be sure the breathing air is safe.
- 6. Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapours to form highly toxic and irritating gases.
- 7. Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and if necessary, while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.

WARNING

WELDING can cause fire or explosion.

Sparks and spatter fly off from the welding arc. The flying sparks and hot metal, weld spatter, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode or welding wire to metal objects can cause sparks, overheating, or fire.

- 1. Protect yourself and others from flying sparks and hot metal.
- 2. Do not weld where flying sparks can strike flammable material.
- 3. Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.

- 4. Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- 5. Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- 7. Do not weld on closed containers such as tanks or drums.
- 8. Connect work cable to the work as close to the welding area as practical to prevent welding current from travelling long, possibly unknown paths and causing electric shock and fire hazards.
- 9. Do not use welder to thaw frozen pipes.
- 10. Remove stick electrode from holder or cut off welding wire at contact tip when not in use.

WARNING

FLYING SPARKS AND HOT METAL can cause injury.

Chipping and grinding cause flying metal. As welds cool, they can throw off slag.

- Wear approved face shield or safety goggles. Side shields recommended.
- 2. Wear proper body protection to protect skin.

WARNING

CYLINDERS can explode if damaged.

Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

- 1. Protect compressed gas cylinders from excessive heat, mechanical shocks, and arcs.
- Install and secure cylinders in an upright position by chaining them to a stationary support or equipment cylinder rack to prevent falling or tipping.
- 3. Keep cylinders away from any welding or other electrical circuits.
- 4. Never allow a welding electrode to touch any cylinder.
- 5. Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.

0-5555 1-3 GENERAL INFORMATION

- 6. Turn face away from valve outlet when opening cylinder valve.
- 7. Keep protective cap in place over valve except when cylinder is in use or connected for use.
- 8. Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards.

WARNING

MOVING PARTS can cause injury.

Moving parts, such as fans, rotors, and belts can cut fingers and hands and catch loose clothing.

- 1. Keep all doors, panels, covers, and guards closed and securely in place.
- 2. Stop engine before installing or connecting unit.
- 3. Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.
- 4. To prevent accidental starting during servicing, disconnect negative (-) battery cable from battery.
- 5. Keep hands, hair, loose clothing, and tools away from moving parts.
- 6. Reinstall panels or guards and close doors when servicing is finished and before starting engine.

WARNING

This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety code Sec. 25249.5 et seq.)

CAUTION

NOTE!

Considerations About Welding And The Effects of Low Frequency Electric and Magnetic Fields. The following is a quotation from the General Conclusions Section of the U.S. Congress, Office of Technology Assessment, Biological Effects of Power

Frequency Electric & Magnetic Fields - Background Paper, OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May 1989): "...there is now a very large volume of scientific findings based on experiments at the cellular level and from studies with animals and people which clearly establish that low frequency magnetic fields and interact with, and produce changes in, biological systems. While most of this work is of very high quality, the results are complex. Current scientific understanding does not yet allow us to interpret the evidence in a single coherent framework. Even more frustrating, it does not yet allow us to draw definite conclusions about questions of possible risk or to offer clear sciencebased advice on strategies to minimize or avoid potential risks."

To reduce magnetic fields in the workplace, use the following procedures.

- 1. Keep cables close together by twisting or taping them.
- 2. Arrange cables to one side and away from the operator.
- 3. Do not coil or drape cable around the body.
- 4. Keep welding power source and cables as far away from body as practical.

WARNING

The above procedures are among those also normally recommended for pacemaker wearers. Consult your doctor for complete information.

1.02 PRINCIPAL SAFETY STANDARDS

Safety in Welding and Cutting, ANSI Standard Z49.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.

Safety and Health Standards, OSHA 29 CFR 1910, from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, American Welding Society Standard AWS F4.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.

National Electrical Code, NFPA Standard 70, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1, from Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202.

Code for Safety in Welding and Cutting, CSA Standard W117.2, from Canadian Standards Association, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3.

Safe Practices for Occupation and Educational Eye and Face Protection, ANSI Standard Z87.1, from American National Standards Institute, 1430 Broadway, New York, NY 10018.

Cutting and Welding Processes, NFPA Standard 51B, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

Safety in welding and allied processes Part 1: Fire Precautions, AS 1674.1-1997 from SAI Global Limited, www.saiglobal.com.

Safety in welding and allied processes Part 2: Electrical, AS 1674.2-2007 from SAI Global Limited, www. saiglobal.com.

Filters for eye protectors - Filters for protection against radiation generated in welding and allied operations AS/NZS 1338.1:1992 from SAI Global Limited, www.saiglobal.com.

0-5555 1-5 GENERAL INFORMATION

This Page Intentionally Blank

SECTION 2: INTRODUCTION

2.01 How To Use This Manual

This Owners Manual only applies to the Part Numbers listed on page i.

To ensure safe operation, read the entire manual, including the chapter on safety instructions and warnings.

Throughout this manual, the words WARNING, CAUTION, and NOTE may appear. Pay particular attention to the information provided under these headings. These special annotations are easily recognized as follows:

NOTE!

An operation, procedure, or background information which requires additional emphasis or is helpful in efficient operation of the system.

WARNING

A procedure which, if not properly followed, may cause injury to the operator or others in the operating area.

CAUTION

A procedure which, if not properly followed, may cause damage to the equipment.

WARNING

Gives information regarding possible electrical shock injury. Warnings will be enclosed in a box such as this.

DANGER

Means immediate hazards which, if not avoided, will result in immediate, serious personal injury or loss of life.

Additional copies of this manual may be purchased by contacting CIGWELD at the address and phone number for your location listed in the inside back cover of this manual. Include the Owner's Manual number and equipment identification numbers.

Electronic copies of this manual can also be down-loaded at no charge in Acrobat PDF format by going to the CIGWELD web site listed below and clicking on the Literature Library link:

http://www.cigweld.com.au

2.02 Equipment Identification

The unit's identification number (specification or part number), model, and serial number usually appear on a nameplate attached to the control panel. In some cases, the nameplate may be attached to the rear panel. Equipment which does not have a control panel such as gun and cable assemblies is identified only by the specification or part number printed on the shipping container. Record these numbers on the bottom of page i for future reference.

2.03 Receipt Of Equipment

When you receive the equipment, check it against the invoice to make sure it is complete and inspect the equipment for possible damage due to shipping. If there is any damage, notify the carrier immediately to file a claim. Furnish complete information concerning damage claims or shipping errors to the location in your area listed in the inside back cover of this manual.

Include all equipment identification numbers as described above along with a full description of the parts in error.

Move the equipment to the installation site before un-crating the unit. Use care to avoid damaging the equipment when using bars, hammers, etc., to uncrate the unit.

2.04 Symbol Chart

Note that only some of these symbols will appear on your model.

	On
	Off
4	Dangerous Voltage
	Increase/Decrease
0 0	Circuit Breaker
~	AC Auxiliary Power
	Fuse
Α	Amperage
V	Voltage
Hz	Hertz (cycles/sec)
f	Frequency
_	Negative
干	Positive
===	Direct Current (DC)
4	Protective Earth (Ground)
₽	Line
	Line Connection
IĐ∕	Auxiliary Power
115V 15A	Receptacle Rating- Auxiliary Power

$1 \sim$	Single Phase
3~	Three Phase
³ ~⊠ ⊙ ■=	Three Phase Static Frequency Converter- Transformer-Rectifier
	Remote
X	Duty Cycle
%	Percentage
0	Panel/Local
<u>.</u>	Shielded Metal Arc Welding (SMAW)
4	Gas Metal Arc Welding (GMAW)
<u>.i.</u>	Gas Tungsten Arc Welding (GTAW)
	Air Carbon Arc Cutting (CAC-A)
Р	Constant Current
	Constant Voltage Or Constant Potential
CTT	High Temperature
<u> </u>	Fault Indication
P	Arc Force
<u></u>	Touch Start (GTAW)
-ngh-	Variable Inductance
— v	Voltage Input

00	Wire Feed Function	
ofo	Wire Feed Towards Workpiece With Output Voltage Off.	
5	Welding Gun	
ST.	Purging Of Gas	
-F	Continuous Weld Mode	
	Spot Weld Mode	
t	Spot Time	
11/17	Preflow Time	
JV12	Postflow Time	
2 Step Trigger Operation Press to initiate wirefeed and welding, release to stop.		
Press and hold for preflow, release to start arc. Press to stop arc, and hold for preflow.		
<u> </u>	Burnback Time	
÷Ϋ	Disturbance In Ground System	
IPM	Inches Per Minute	
МРМ	Metres Per Minute	
T	Spool Gun	
AUTO SET MIG STICK TIG	Auto Settings for MIG, STICK, TIG	

rt # A-04937_AC

2.05 Description

The CIGWELD WELDSKILL 205AC/DC is a single phase constant current welding inverter capable of performing MMAW (Stick) and GTAW (HF TIG) welding processes. The unit is equipped with digital amperage and voltage meters, and a host of other features in order to fully satisfy the broad operating needs of the modern user. The unit is also fully compliant to Australian Standard AS 60974.1 and IEC 60974.1.

The WELDSKILL 205AC/DC provides excellent welding performance across a broad range of applications when used with the correct welding consumables and procedures. The following instructions detail how to correctly and safely set up the machine and give guidelines on gaining the best efficiency and quality from the Power Source. Please read these instructions thoroughly before using the unit.

*NOTE

Refer to the complete Warranty Schedule at the back of the manual..

2.06 User Responsibility

This equipment will perform as per the information contained herein when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Defective equipment (including welding leads) should not be used. Parts that are broken, missing, plainly worn, distorted or contaminated, should be replaced immediately. Should such repairs or replacements become necessary, it is recommended that such repairs be carried out by appropriately qualified persons approved by CIGWELD. Advice in this regard can be obtained by contacting accredited CIGWELD Distributor.

This equipment or any of its parts should not be altered from standard specification without prior written approval of CIGWELD. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use or unauthorised modification from standard specification, faulty maintenance, damage or improper repair by anyone other than appropriately qualified persons approved by CIGWELD.

2.07 Packaged Item

WeldSkill 205AC/DC Inverter (Part No. W1008205)

- WeldSkill 205AC/DC Inverter Power Source
- · 4m Lead with Twist Lock Electrode Holder
- 4m Lead with Work Clamp
- TIG Torch type 26F with flex head, 8m lead, trigger switch and remote current control
- TIG Torch Accessory Kit that includes 1.6mm and 2.4mm tungstens with collets, collet bodies and No 4, 5 & 6 Alumina Nozzles
- · Shielding Gas Hose
- Cutskill Argon Regulator / Flowmeter
- Shoulder Strap

2.08 Transporting Methods

These units are equipped with a handle for carrying purposes.

WARNING

ELECTRIC SHOCK can kill. DO NOT TOUCH live electrical parts. Disconnect input power conductors from de-energized supply line before moving the welding power source.

WARNING

FALLING EQUIPMENT can cause serious personal injury and equipment damage.

Lift unit with handle on top of case.

Use handcart or similar device of adequate capacity.

If using a fork lift vehicle, place and secure unit on a proper skid before transporting.

2.09 Duty Cycle

The rated duty cycle of a Welding Power Source, is a statement of the time it may be operated at its rated welding current output without exceeding the temperature limits of the insulation of the component parts. To explain the 10 minute duty cycle period the following example is used. Suppose a Welding Power Source is designed to operate at a 60% duty cycle, 90 amperes at 23.6 volts. This means that it has been designed and built to provide the rated amperage (90A) for 6 minutes, i.e. arc welding time, out of every 10 minute period (60% of 10 minutes is 6 minutes). During the other 4 minutes of the 10 minute period the Welding Power Source must idle and allowed to cool.

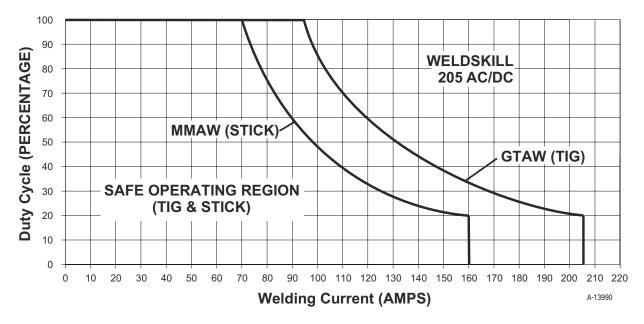


Figure 2-1: WeldSkill 205AC/DC Duty Cycle

INTRODUCTION 2-4 0-5555

2.10 Specifications

Description	WELDSKILL 205 AC/DC
Plant Part Number	W1008205
Power Source Mass	12 kg
Power Source Dimensions	H 324mm x W 176mm x D 430mm
Cooling	Fan Cooled
Welder Type	Inverter Power Source
Australian Standards	AS 60974.1-2006 / IEC 60974-1
Number of Phases	1
Nominal Supply Voltage	240V +/- 15%
Nominal Supply Frequency	50/60Hz
Welding Current Range (DC STICK Mode)	10 – 160A
Welding Current Range (DC TIG Mode)	10 - 205A
Effective Input Current (I _{1eff}) (Note 2)	15A
Maximum Input Current (I _{1max})	34A
Single Phase Generator Requirement (Note	10kVA (at 0.8 power factor)
3)	8kW (at 1.0 power factor)
Output Terminal Type	Dinse™ Style 50
TIG (GTAW)	
Welding Output, 40°C, 10 min.	205A @ 20%, 18.2V
	120A @ 60%, 14.8V
	95A @ 100%, 13.8V
Open Circuit Voltage	63V
STICK (MMAW)	
Welding Output, 40°C, 10 min.	160A @ 20%, 26.4V
	90A @ 60%, 23.6V
	70A @ 100%, 22.8V
Open Circuit Voltage (VRD On)	26V
Open Circuit Voltage (VRD Off)	63V
Protection Class	IP23S

Table 2-1: Specifications

NOTE 1

Due to variations that can occur in manufactured products, claimed performance, voltages, ratings, all capacities, measurements, dimensions and weights quoted are approximate only. Achievable capacities and ratings in use and operation will depend upon correct installation, use, applications, maintenance and service.

NOTE 2

The Effective Input Current should be used for the determination of cable size & supply requirements.

NOTE 3

Minimum Generator Recommendation at the Maximum Output Duty Cycle.

Due to large variations in performance and specifications of different brands and types of generators, CIGWELD cannot guarantee full welding output power or duty cycle on every brand or type of generator.

Some small generators incorporate low cost circuit breakers on their outputs. These circuit breakers usually will have a small reset button, and will trip much faster than a switchboard type circuit breaker. This may result in not being able to achieve full output or duty cycle from the power source / generator combination. For this reason we recommend a generator that incorporates switchboard type circuit breakers.

CIGWELD recommends that when selecting a generator, that the particular power source / generator combination be adequately trialled to ensure the combination performs to the users expectations.

NOTE 4

CIGWELD reserves the right to change product performance and specifications without notice.

NOTE 5

If an extension lead is required to be used it is recommended to use a minimum size of 2.5mm² Heavy Duty Extension Lead. Longer extension leads may impact welding performance and operation.

2.11 Optional Accessories

We recommend genuine CIGWELD products.

The biggest range and best quality with guaranteed performance.

Part Number	Description
W4014604	Tig Torch with 4m lead and remote control
W4014605	Tig Torch with 8m lead and remote control
BGSAK2	TIG Torch Accessory Kit for 17, 26 & 18 TIG Torches
W4015800	Foot Control with 8m lead
210254	WeldSkill Argon Regulator / Flowmeter, 55LPM, 2 Gauge
201030	CutSkill Preset Argon Regulator / Flowmeter Vertical Inlet
201031	CutSkill Preset Argon Regulator / Flowmeter Side Inlet
W7004913	Shielding Gas Hose Assembly
WS42550	WeldSkill Welding Leadset 4m, 25mm² cable, 50mm² dinse, 250A Twistlock Electrode Holder
WS53550	WeldSkill Welding Leadset 5m, 35mm² cable, 50mm² dinse, 400A Twistlock Electrode Holder
704828	Work Lead, 330A, 8m, 35mm2 cable, 50mm2 dinse

Table 2-2

INTRODUCTION 2-6 0-5555

TIG Torch Consumables

Part Number	Description
BG10N49/R	Nozzle Alumina 8mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N48/R	Nozzle Alumina 10mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N47/R	Nozzle Alumina 11mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N46/R	Nozzle Alumina 12.5mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N22/R	Collet 1.0mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N23/R	Collet 1.6mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N24/R	Collet 2.4mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N25/R	Collet 3.2mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N30/R	Collet Body 1.0mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N31/R	Collet Body 1.6mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N32/R	Collet Body 2.4mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG10N28/R	Collet Body 3.2mm, for 17, 26 & 18 TIG Torches (pkt of 5)
BG57Y02/R	Back Cap – Long for 17, 26 & 18 TIG Torches (pkt of 2)
BG57Y04/R	Back Cap – Short for 17, 26 & 18 TIG Torches (pkt of 2)

Table 2-3

TIG Electrodes

Part Number	Description
699846	Ceriated Electrode 1.6mm x 175mm AC/DC Grey (Pkt of 10)
699847	Ceriated Electrode 2.4mm x 175mm AC/DC Grey (Pkt of 10)
699848	Ceriated Electrode 3.2mm x 175mm AC/DC Grey (Pkt of 10)

Table 2-4

Related Products

Part Number	Description
646754	WeldSkill TIG Welding Gloves
646755	WeldSkill Heavy Duty Welding Gloves
454304	WeldSkill Auto Darkening Welding Helmet Fixed Shade 11 Black
454305	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Blue
454314	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Carbon Fibre
454321	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Racer
454322	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Tribal
454324	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Oz Flag
454335	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Flaming Skull
454336	WeldSkill Auto Darkening Welding Helmet Variable Shade 9-13 Pink Lady
454331	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Blue
454332	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Space
454333	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Claw
454334	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Shadow
454342	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Howling Wolf
454343	ProLite Auto Darkening Welding Helmet Variable Shade 9-13 Redback Spider
Note: CIGWELD Electrodes see Page 5-10	

Table 2-5

INTRODUCTION 2-8 0-5555

SECTION 3: INSTALLATION

3.01 Environment

These units are designed for use in environments with increased hazard of electric shock.

A. Examples of environments with increased hazard of electric shock are:

- 1. In locations in which freedom of movement is restricted, so that the operator is forced to perform the work in a cramped (kneeling, sitting or lying) position with physical contact with conductive parts.
- In locations which are fully or partially limited by conductive elements, and in which there is a high risk of unavoidable or accidental contact by the operator.
- B. Environments with increased hazard of electric shock do not include places where electrically conductive parts in the near vicinity of the operator, which can cause increased hazard, have been insulated.

3.02 Location

Be sure to locate the welder according to the following guidelines:

- A. In areas, free from moisture and dust.
- B. Ambient temperature between -10° C to 40° C.
- C. In areas, free from oil, steam and corrosive gases.
- D. In areas, not subjected to abnormal vibration or shock.
- E. In areas, not exposed to direct sunlight or rain.
- F. Place at a distance of 300mm or more from walls or similar that could restrict natural air flow for cooling.

3.03 Ventilation

Since the inhalation of welding fumes can be harmful, ensure that the welding area is effectively ventilated.

3.04 Mains Supply Voltage Requirements

The Mains Supply Voltage should be within \pm 15% of the rated Mains Supply Voltage. If actual Mains Supply Voltage is outside this range Welding Current may not be available and may cause internal components to fail.

Refer to Specifications on page 2-5 for Supply Voltage information.

The Welding Power Source must be:

- Correctly installed, if necessary, by a qualified electrician.
- Correctly earthed (electrically) in accordance with local regulations.
- Connected to the correct size power point and fuse as per the Specifications on page 2-5.

IMPORTANT NOTE!

This product has been fitted with a supply plug as indicated in Section 2.10. Note that the welding output range applicable with the fitted supply plug is detailed in Section 2.10.

WARNING

Any electrical work must be carried out by a qualified Electrical Tradesperson.

3.05 High Frequency Introduction

The importance of correct installation of high frequency welding equipment cannot be overemphasized. Interference due to high frequency initiated or stabilised arc is almost invariably traced to improper installation. The following information is intended as a guide for personnel installing high frequency welding machines.

WARNING

The high frequency section of this machine has an output similar to a radio transmitter. The machine should NOT be used in the vicinity of blasting operations due to the danger of premature firing.

\triangle

WARNING

It is also possible that operation close to computer installations may cause computer malfunction.

3.06 High Frequency Interference

Interference may be transmitted by a high frequency initiated or stabilised arc welding machine in the following ways.

- 1. Direct Radiation: Radiation from the machine can occur if the case is metal and is not properly grounded. It can occur through apertures such as open access panels. The shielding of the high frequency unit in the Power Source will prevent direct radiation if the equipment is properly grounded.
- 2. Transmission via the Supply Lead: Without adequate shielding and filtering, high frequency energy may be fed to the wiring within the installation (mains) by direct coupling. The energy is then transmitted by both radiation and conduction. Adequate shielding and filtering is provided in the Power Source.
- 3. Radiation from Welding Leads: Radiated interference from welding leads, although pronounced in the vicinity of the leads, diminishes rapidly with distance. Keeping leads as short as possible will minimise this type of interference. Looping and suspending of leads should be avoided wherever possible.
- 4. Re-Radiation from Unearthed Metallic Objects: A major factor contributing to interference is reradiation from unearthed metallic objects close to the welding leads. Effective grounding of such objects will prevent re-radiation in most cases.

3.07 Generators

Refer to Note 4 on page 2-6 for recommendations when using with a Generator.

3.08 Extension Leads

If an extension lead is required to be used it is recommended to use a minimum size of 2.5mm² Heavy Duty Extension Lead. Longer extension leads may impact welding performance and operation.

3.09 Short Circuit Protection While Welding

To prolong the useful life of a TIG tungsten electrode, the WeldSkill 205 AC/DC incorporates special circuitry.

In AC and DC HF TIG mode, if the tungsten electrode touches the work the welding current is reduced to 60 Amps within 1 second.

In STICK mode, if the electrode touches the work for more than two seconds the welding current is reduced to 15 Amps.

3.10 Electromagnetic Compatibility

WARNING

Extra precautions for Electromagnetic Compatibility may be required when this Welding Power Source is used in a domestic situation.

A. Installation and Use - Users Responsibility

The user is responsible for installing and using the welding equipment according to the manufacturer's instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the welding equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing the welding circuit, see NOTE below. In other cases it could involve constructing an electromagnetic screen enclosing the Welding Power Source and the work, complete with associated input filters. In all cases, electromagnetic disturbances shall be reduced to the point where they are no longer troublesome.

NOTE!

The welding circuit may or may not be earthed for safety reasons. Changing the earthing arrangements should only be authorised by a person who is competent to assess whether the changes will increase the risk of injury, e.g. by allowing parallel welding current return paths which may damage the earth circuits of other equipment. Further guidance is given in IEC 974-13 Arc Welding Equipment - Installation and use (under preparation).

INSTALLATION 3-2 0-5555

B. Assessment of Area

Before installing welding equipment, the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account

- 1. Other supply cables, control cables, signalling and telephone cables; above, below and adjacent to the welding equipment.
- 2. Radio and television transmitters and receivers.
- 3. Computer and other control equipment.
- 4. Safety critical equipment, e.g. guarding of industrial equipment.
- 5. The health of people around, e.g. the use of pacemakers and hearing aids.
- 6. Equipment used for calibration and measurement
- 7. The time of day that welding or other activities are to be carried out.
- 8. The immunity of other equipment in the environment: the user shall ensure that other equipment being used in the environment is compatible: this may require additional protection measures.

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

C. Methods of Reducing Electromagnetic Emissions

1. Mains Supply

Welding equipment should be connected to the mains supply according to the manufacturer's recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equipment in metallic conduit or equivalent. Shielding should be electrically continuous throughout it's length. The shielding should be connected to the Welding Power Source so that good electrical contact is maintained between the conduit and the Welding Power Source enclosure.

2. Maintenance of Welding Equipment

The welding equipment should be routinely maintained according to the manufacturer's recommendations. All access and service doors and covers should be closed and properly fastened when the welding equipment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturer's instructions. In particular, the spark gaps of arc striking and stabilising devices should be adjusted and maintained according to the manufacturer's recommendations.

3. Welding Cables

The welding cables should be kept as short as possible and should be positioned close together, running at or close to the floor level.

4. Equipotential Bonding

Bonding of all metallic components in the welding installation and adjacent to it should be considered. However. Metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching the metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

5. Earthing of the Workpiece

Where the workpiece is not bonded to earth for electrical safety, nor connected to earth because of it's size and position, e.g. ship's hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the workpiece to earth should be made by direct connection to the workpiece, but in some countries where direct connection is not permitted. the bonding should be achieved by suitable capacitance, selected according to national regulations.

6. Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening the entire welding installation may be considered for special applications.

3.11 Foot Control, Part No. W4015800 (Optional Accessory)

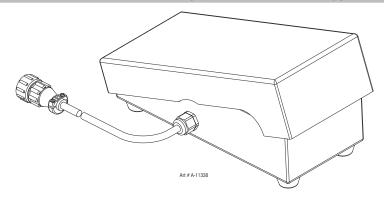


Figure 3-1: Foot Control

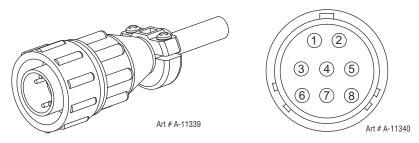


Figure 3-2: 8 Pin Control Plug

Pin	Description
1	Not Used
2	Trigger Switch
3	Trigger Switch
4	Not Used
5	Potentiometer Maximum
6	Potentiometer Minimum
7	Potentiometer Wiper
8	Not Used

Table 3-1

Description

The CIGWELD Foot Control is a foot operated switch and potentiometer which starts and stops the welding process and controls welding current through operation of the foot pedal. Refer to list below for compatible Cigweld power sources.

Installation

Attach the 8-pin connector on the end of the cable to the 8-pin receptacle on the front of the welding machine. To complete the connection, align the keyway, insert the plug, and rotate the threaded collar fully clockwise.

INSTALLATION 3-4 0-5555

Foot Control Operation

Press the foot pedal to start the machine output functions. The foot control potentiometer controls the welding current up to the level set on the welding power source. With the foot control connected, the power source will only display minimum preview Amps until the foot control is depressed then it displays actual welding current when welding. Pressing the pedal to increases the welding current; letting up on the pedal decreases the welding current. Releasing the pedal completely extinguishes the arc and initiates the post-flow shielding gas timer (where fitted).

Note that some power sources may require the remote/local switch set to remote, the maximum setting of the power source will be determined by the respective front panel control, irrespective of the remote control device setting. As an example, if the output current on the power source front panel is set to 50% of the available current and the remote control device is set to 100% output or maximum, the maximum achievable output from the unit will be 50%. Should 100% output be required, the respective front panel control must be set to 100% or maximum, in which case the remote device will then be able to control between 1-100% output.

This foot control is compatible with the following Cigweld power sources:

WeldSkill 205AC/DC Part No.: W1008206 WeldSkill 200AC/DC Part No.: W1006202

Transmig 175i+ Part No.: W1005186
Transmig 220i Part No.: W1005221
Transmig 250i Part No.: W1003251
Transtig 200AC/DC Part No.: 700719

Note 1: Some power sources other than specified as above may not function with the foot control.

Note 2: The foot control will only work correctly when power source trigger mode 2T (Normal) is selected.

This page is left blank intentionally.

INSTALLATION 3-6 0-5555

SECTION 4: OPERATION

4.01 Overview

Conventional operating procedures apply when using the Welding Power Source, i.e. connect work lead directly to workpiece and electrode lead is used to hold electrode (Consult the electrode manufacturers information for the correct polarity). The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrode, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide, then finally adjust the current setting to suit the application.

4.02 WeldSkill 205AC/DC Power Source Controls and Features

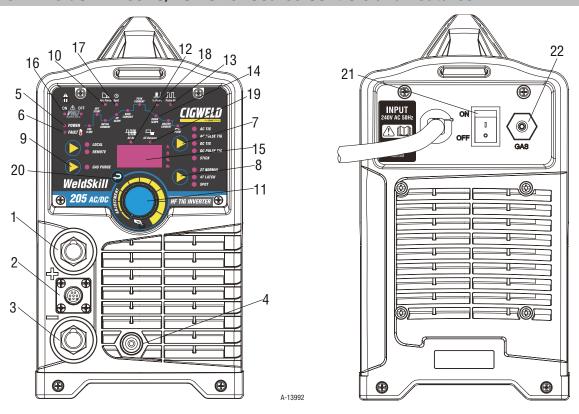


Figure 4-1: Controls on Front Panel

1. Positive Welding Terminal

Positive Welding Terminal. 50mm2 Dinse Type. Welding current flows from the Power Source via heavy duty bayonet type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.

CAUTION

Loose welding terminal connections can cause overheating and result in the male plug being fused in the Dinse terminal.

Manual 0-5555 4-1 OPERATION

2. 8 Pin Control Socket

The 8 pin receptacle is used to connect a trigger switch or remote control to the welding Power Source circuitry:

To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise. The socket information is included in the event the supplied cable is not suitable and it is necessary to wire a plug or cable to interface with the 8 pin receptacle.

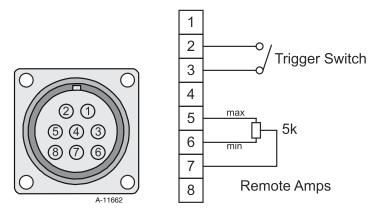


Figure 4-2: Remote Control Socket

Socket Pin	Part Number / Description
1	Not used
2	Trigger Switch Input
3	Trigger Switch Input
4	Not used
5	Remote Control 5k ohm Potentiometers Maximum
6	Remote Control 5k ohm Potentiometers Minimum
7	Remote Control 5k ohm Potentiometer Wiper
8	Not used

Table 4-1: 8 Pin Interconnection Control Plug Configuration

3. Negative Welding Terminal

Negative Welding Terminal. 50mm2 Dinse Type. Welding current flows from the Power Source via heavy duty bayonet type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection

CAUTION

Loose welding terminal connections can cause overheating and result in the male plug being fused in the Dinse terminal.

4. Shielding Gas Outlet

The Shielding Gas Outlet located on the front panel is a 5/8-18 UNF female gas fitting and is utilised for the connection of a suitable TIG Torch.

OPERATION 4-2 Manual 0-5555

5. Power ON Indicator

The POWER ON indicator illuminates when the ON/OFF switch is in the ON position and the correct mains voltage is present.

NOTE

If the Power Source is repeatedly switched On then Off rapidly or the supply to the power source is turned On and Off rapidly it may not turn On due to in-built protective devices acting. If this occurs the Power Source will not turn On and the Power On indicator on the front panel will flash indicating that this protective device has been activated. Turn the Power Source On/Off switch to the Off position for several minutes to allow for the protective devices to reset.

6. Fault Indicator (Thermal Overload)

The Fault Indicator illuminates when Thermal Overload exists. This is due to the duty cycle of the power source being exceeded. Once the power source cools sufficiently it will automatically reset and the Fault Indicator and the power source is then able to continue welding. During the time of cooling the power source should remain ON such that the fan continues to operate allowing the unit to cool sufficiently. If after 30 minutes with the fan running the Fault Indicator has not gone OFF then have an Accredited CIGWELD Service Provider check the power source.

7. Process Selection Button

The process selection control is used to select the desired welding mode. Five modes are available GTAW (AC TIG, AC Pulse TIG, DC TIG, and DC Pulse TIG) and MMAW (Stick) modes.

Note that when the unit is powered off when in STICK mode the mode selection control will automatically default to DC TIG 2T mode.

This is necessary so as to prevent inadvertent arcing should an electrode holder be connected to the unit and mistakenly be in contact with the work piece during power up.

8. Trigger and Spot Mode Control Button (TIG Mode only)

The trigger mode control is used to switch the functionality of the torch trigger between 2T (normal), , 4T (latch mode) and Spot mode.

2T Normal Mode

In this mode, the torch trigger must remain depressed for the welding output to be active. Press and hold the torch trigger to activate the power source (weld). Release the torch trigger switch to cease welding.

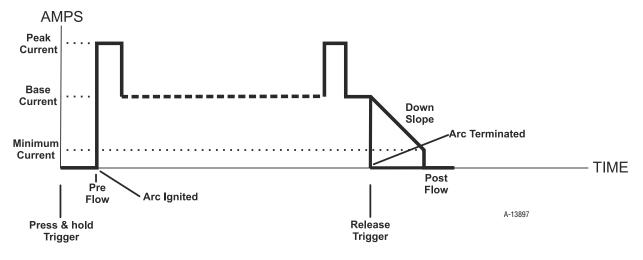


Figure 4-3

4T Latch Mode

This mode of welding is mainly used for long welding runs to reduce operator fatigue. In this mode the operator can press and release the torch trigger and the output will remain active. To deactivate the power source, the trigger switch must again be depressed and realised, thus eliminating the need for the operator to hold the torch trigger.

Note that when operating in GTAW (HF TIG mode), the power source will remain activated until the selected down slope time has elapsed

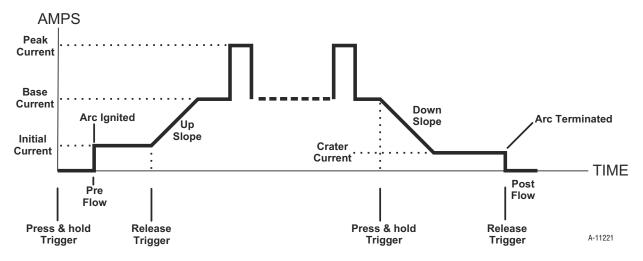


Figure 4-4

SPOT Mode

Spot welding is used to weld two thin plates together at a desired location by melting the top and bottom plates together to form a nugget between them. The weld time is set by adjusting the Spot Time duration to the desired time. To select and set Spot time first select Spot Mode on the Trigger and Spot Mode Control Button then either using the Multifunction Control Knob (11) or Back button

increment until the Spot Time $oldsymbol{\Theta}$ indicator is selected then use the Multifunction Control Knob to set the desired Spot Time duration in seconds. Range is 0.5 to 10 seconds.

9. Gas Purge Button

Press and hold the PURGE button to purge the gas line in TIG modes. To PURGE the shielding gas line in HF TIG mode press the PURGE button. The indicator will illuminate. To stop shielding gas from purging release the Gas Purge button and the purge indicator will extinguish and shielding gas will cease.

10. Arc Force Indicator

This indicator light will illuminate when programming Arc Force (STICK mode only). Refer to Section 6.02 in the Programming Mode for further detail.

11. Multifunction Control Knob

The multifunction control knob is used to adjust welding current.

It is also used to adjust parameters when in programming mode.

12.AC Hz (Frequency) Indicator (AC TIG Modes only)

This indicator light will illuminate when programming AC Frequency (AC TIG modes only). Refer to Section 5.03 in the Programming Mode for further detail.

OPERATION 4-4 Manual 0-5555

13 Pulse Hz (Frequency) Indicator (AC and DC TIG Pulse Modes only)

Pulse indicator will illuminate when set pulse frequency (AC and DC Pulse TIG modes only). Refer to Section 5.03 in the Programming Mode for further detail.

14. Programming Parameter Indicators

These indicator lights will illuminate when programming.

15. Digital Parameter Meter

The digital meter is used to display the actual output current of the power source. It is also used to display Parameters in Programming Mode.

Depending on the Programming Parameter selected, the status indictor adjacent to the digital meter will illuminate to show the units of the programming parameter. This value can be adjusted by varying the multifunction control when the desired Programming Parameter Indicator illuminates.

At times of non-welding, the amperage meter will display a pre-set (preview) amperage value.

When welding, the meter will display actual welding current.

Should a remote device be connected the maximum setting of the power source will be determined by the respective front panel control, irrespective of the remote control device setting. As an example, if the output current on the power source front panel is set to 50% and the remote control device is set to 100%, the maximum achievable output from the unit will be 50%. Should 100% output be required, the respective power source front panel control must be set to 100%, in which case the remote device will then be able to control between 0-100% output.

16.VRD ON/OFF Indicator

A VRD (voltage reduction device) is a hazard reducing device designed to reduce electric shock hazards present on the output of welding power source when operating in MMAW (stick) mode. Note that the presence of VRD should not be used as a substitute for the use of appropriate safety practices as indicated in section one of this manual.

Both the green and red indicator lights only operate in MMAW (stick) mode.

The green VRD ON light illuminates (red light is off) when the VRD is active. Under this condition the open circuit voltage of the unit is limited to below 35V DC, thus reducing the potential of serious electric shock (such as when changing electrodes).

The red VRD OFF light illuminates (green light is off) when the VRD is inactive. Under this condition the output voltage of the unit will be at welding potential which in some cases may exceed 35V DC.

17.Spot Welding Indicator 🕒

When the selected process is Spot Welding the Spot indicator illuminates. Refer to Section 5.03 in the Programming Mode for further detail.

18. Pulse Width Indicator

Pulse Width is a parameter to adjust the ratio of the peak current time during each pulse cycle. Turn the Multifunction Control Knob in programming mode, and adjust pulse width when the % Pulse indicator illuminates. Refer to Section 5.03 in the Programming Mode for further detail.

19.AC Balance Indicator

The AC Balance sets the balance of AC wave form in AC TIG mode. Turn the Multifunction Control Knob in programming mode, and adjust AC Balance when the indicator illuminates. Refer to Section 5.03 in the Programming Mode for further detail.

Manual 0-5555 4-5 OPERATION

20. Back Button

Press Back Button to return to previous parameter selected...

21.0n / Off Switch

This Switch is located on the rear of the Power Source and turns mains power off and on.

WARNING

When the front digital displays are lit, the machine is connected to the Mains supply voltage and the internal electrical components are at Mains voltage potential.

NOTE

If the Power Source is repeatedly switched On then Off rapidly or the supply to the power source is turned On and Off rapidly it may not turn On due to in-built protetive devices acting. If this occurs the Power Source will not turn On and the Power On indicator on the front panel will flash indicating that this protective device has been activated. Turn the Power Source On/Off switch to the Off position for several minutes to allow for the protective devices to reset.

22. Shielding Gas Inlet

The Gas Inlet connection is used to supply the appropriate TIG welding gas to the unit. Refer to Section 5.02 for TIG setup details. Ensure that the shielding gas hose connection is sufficiently tight at the regulator connection and the quick connect fitting "locks" into place correctly on the rear of the power source.

23. Cooling Fan (Not Shown)

The WeldSkill 205AC/DC is fitted with a cooling fan that will operate continuously when the On/Off switch on the rear panel is switched to the On position.

24. Hot Start Feature (Not Shown)

This feature operates in Stick (MMAW) mode. The Hot Start feature improves the arc start characteristics by momentarily increasing the welding current to a level above the preset amperage (Welding Current). This is a preset feature and is not adjustable.

25. Anti Stick Feature (Not Shown)

This feature operates in Stick (MMAW) mode. The anti stick feature senses when the electrode sticks and automatically reduces the current to prevent the Stick Electrode from sticking to the work piece. This is a preset feature and is not adjustable.

OPERATION 4-6 Manual 0-5555

SECTION 5: TIG (GTAW) WELDING

5.01 Shielding Gas Regulator/Flowmeter Operating Instructions

WARNING

This equipment is designed for use with welding grade (Inert) shielding gases only.

Shielding Gas Regulator/Flowmeter Safety

This regulator/flowmeter is designed to reduce and control high pressure gas from a cylinder or pipeline to the working pressure required for the equipment using it.

If the equipment is improperly used, hazardous conditions are created that may cause accidents. It is the users responsibility to prevent such conditions. Before handing or using the equipment, understand and comply at all times with the safe practices prescribed in this instruction.

SPECIFIC PROCEDURES for the use of regulators/flowmeters are listed below.

- 1. NEVER subject the regulator/flowmeter to inlet pressure greater than its rated inlet pressure.
- 2. NEVER pressurize a regulator/flowmeter that has loose or damaged parts or is in a questionable condition. NEVER loosen a connection or attempt to remove any part of a regulator/flowmeter until the gas pressure has been relieved. Under pressure, gas can dangerously propel a loose part.
- 3. DO NOT remove the regulator/flowmeter from a cylinder without first closing the cylinder valve and releasing gas in the regulator/flowmeter high and low pressure chambers.
- 4. DO NOT use the regulator/flowmeter as a control valve. When downstream equipment is not in use for extended periods of time, shut off the gas at the cylinder valve and release the gas from the equipment.
- 5. OPEN the cylinder valve SLOWLY. Close after use.

User Responsibilities

This equipment will perform safely and reliable only when installed, operated and maintained, and repaired in accordance with the instructions provided. Equipment must be checked periodically and repaired, replaced, or reset as necessary for continued safe and reliable performance. Defective equipment should not be used. Parts that are broken, missing, obviously worn, distorted, or contaminated should be replaced immediately.

The user of this equipment will generally have the sole responsibility for any malfunction, which results from improper use, faulty maintenance, or by repair by anyone other than an accredited repairer.

CAUTION

Match regulator/flowmeter to cylinder. NEVER CONNECT a regulator/flowmeter designed for a particular gas or gases to a cylinder containing any other gas.

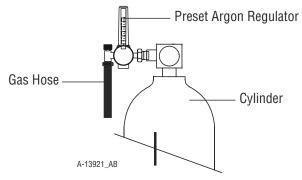


Figure 5-1: Fit Regulator/flowmeter to Cylinder

Installation

- 1. Remove cylinder valve plastic dust seal. Clean the cylinder valve outlet of impurities that may clog orifices and damage seats before connecting the regulator.
 - Crack the valve (open then close) momentarily, pointing the outlet away from people and sources of ignition. Wipe with a clean lintless cloth.
- 2. Match regulator to cylinder. Before connecting, check that the regulator label and cylinder marking agree and that the regulator inlet and cylinder outlet match. NEVER CONNECT a regulator designed for a particular gas or gases to a cylinder containing any other gas.
- 3. Connect the regulator inlet connection to cylinder or pipeline and tighten it firmly but not excessively, with a suitable spanner.
- 4. Connect and tighten the outlet hose firmly and attach down-stream equipment. The flowmeter must be in the vertical position to read accurately.
- 5. The regulator/flowmeter has a self-reseating relief valve not designed to protect down stream equipment. To protect sensitive down-stream equipment a separate safety device may be necessary.

Operation

With the regulator connected to cylinder or pipeline:

- 1. Stand to one side of regulator and slowly open the cylinder valve. If opened quickly, a sudden pressure surge may damage internal regulator parts.
- 2. Since the regulator is a preset type, no adjustments to the regulator are necessary. Before opening the cylinder valve, be sure that the flow adjusting valve is in a finger-tight "OFF" position (clockwise).
- 3. Slowly and carefully, open the cylinder valve until the maximum pressure registers on the high pressure gauge.

CAUTION

DO NOT purge oxidising or flammable gases in the presence of flame, lighted cigarettes, or other sources of ignition or in a confined space. Open each downstream valve in turn, if more than one regulator is used. Close one valve before opening the next one. This procedure will prevent explosive gas mixtures occurring in the welding hose between regulators and equipment.

Close equipment valve(s) after purging, and test all connections for leaks with a suitable leak detection solution or soapy water. Never use a flame when testing for leaks.

Adjusting Flow Rate

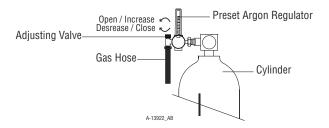


Figure 5-2: Adjust Flow Rate

With the regulator ready for operation, adjust working flow rate as follows:

1. Slowly turn adjusting valve in an anti-clockwise direction to open and increase until the bobbin in the flow tube indicates the required flow rate.

NOTE

It may be necessary to re-check the shielding gas regulator/flowmeter flow rate following the first weld sequence due to back pressure present within shielding gas hose assembly.

TIG (GTAW) Welding 5-2 0-5555

2. To reduce flow rate, allow the welding grade shielding gas to discharge from regulator by opening the downstream valve. Bleed welding grade shielding gas into a well ventilated area and away from any ignition source. Turn adjusting screw clockwise, until the required flow rate is indicated on the gauge. Close downstream valve.

Shutdown

Close cylinder valve whenever the regulator is not in use. To shut down for extended periods (more than 30 minutes).

- 1. Close cylinder or upstream valve tightly.
- 2. Open downstream equipment valves to drain the lines. Bleed gas into a well ventilated area and away from any ignition source.
- 3. After gas is drained completely, disengage adjusting screw and close downstream equipment valves.
- 4. Before transporting cylinders that are not secured on a cart designed for such purposes, remove regulators.

5.02 Setup For TIG (GTAW) Welding

- A. Select a TIG mode with the process selection control (refer to Section 4.02.7 for further information).
- B. Connect the TIG Torch to the negative welding terminal (-). Refer to Note below for Optional TIG Torch information. Welding current flows from the power source via Dinse type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
- C. Connect the TIG torch trigger switch and remote current control if applicable via the 8 pin socket located on the front of the Power Source. The TIG torch will require a trigger switch to weld in TIG Mode.
- D. Connect the work lead to the positive welding terminal (+). Welding current flows from the Power Source via Dinse type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
- E. Connect the Argon Regulator/Flowmeter to the Welding Grade Argon Shielding Gas Cylinder then connect the TIG Torch gas hose to regulator. Before turning on shielding gas check that all fittings are tight and the gas valve on the TIG torch is turned off. Before commencing to TIG weld open TIG torch gas valve to allow sufficient shielding gas flow when welding. Refer to Section 5.05 for recommended Shielding Gas flow rates and other TIG Welding information.

WARNING

Secure the welding grade shielding gas cylinder in an upright position by chaining it to a suitable stationary support to prevent falling or tipping.

Open Gas Cylinder Valve carefully.

WARNING

Before connecting the work clamp to the work piece and inserting the electrode in the TIG torch make sure the Mains power supply is switched off.

CAUTION

Remove any packaging material prior to use. Do not block the air vents at the front or rear of the Welding Power Source.

NOTE!

If the TIG torch has a trigger switch or a remote TIG torch current control fitted then it will require to be connected to the 8 pin socket. (Refer to section 4.02.2 Remote Control Socket for further information)..

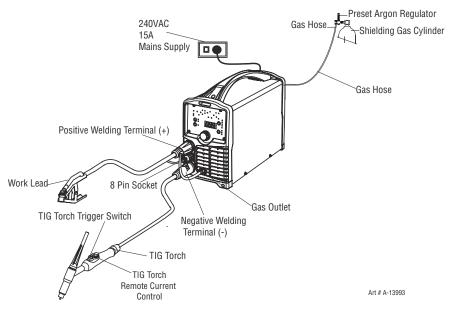


Figure 5-3: Setup For TIG (GTAW) Welding

5.03 TIG Programming Modes

CAUTION

HF is present in all TIG modes. This may cause damage to measuring equipment connected to the output of this power source.

Press the PROCESS button to select AC or DC TIG modes.

The Programming LED's are always active.

Use the Multi Function Control to adjust the parameter selected.

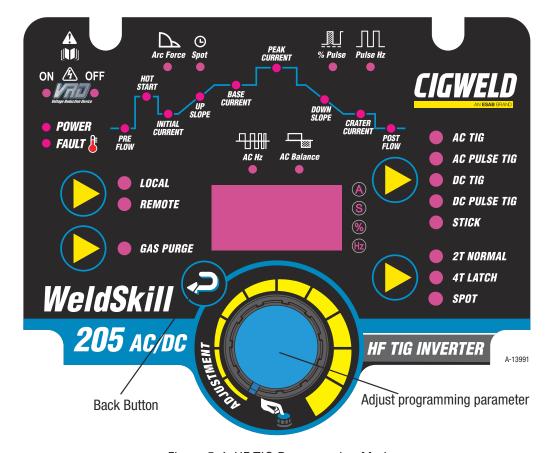


Figure 5-4: HF TIG Programming Mode

WeldSkill 205AC/DC

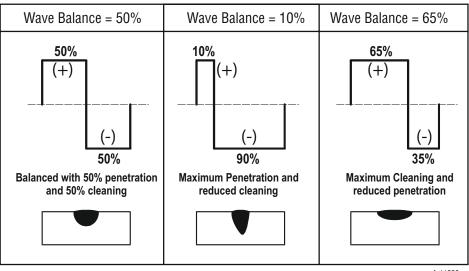
Programming Parameter	Adjustment Device	Display	Factory Setting
Pre-Flow This parameter operates in TIG modes only and is used to provide gas to the weld zone prior to striking the arc, once the torch trigger switch has been pressed. This control is used to dramatically reduce weld porosity at the start of a weld.	DOUGENEEN.	1.0 Second	0.5 second
Hot Start This parameter operates in all weld modes and is used to heat up the weld zone in TIG modes or improve the start characteristics for stick electrodes the peak start current on top of the BASE (WELD) current. e.g. HOT START current = 130 amps when BASE (WELD) = 100 amps & HOT START = 30 amps	S. S	70 Range: 0 to 70Amps	25 Amps (DC and DC Pulse TIG modes) 35 Amps (AC and AC Pulse TIG modes)
Spot Spot welding is used to weld two thin plates together at a desired location by melting the top and bottom plates together to form a nugget between them. The weld time is set by the Spot Time. In TIG Welding modes once the Spot Welding mode has been selected on the Trigger and Spot Welding Control button then this can be selected when incrementing using either the Multifunction Control knob or back button. Once selected the Spot Welding time desired can be set.	NOTIFIED TO THE PARTY OF THE PA	1.0 Range: 0.5 to 10 seconds	2 seconds
Initial Current This parameter operates in (4T) TIG modes only and is used to set the start current for TIG. The Initial Current remains on until the torch trigger switch is released after it has been depressed. Note: The maximum initial current available will be limited to the set value of the base current and peak current.	THE PARTY OF THE P	Range: 10 Amps to Base Current value set (DC and AC TIG modes) 10 Amps to peak current (DC and AC Pulse modes)	15 Amps (DC and DC Pulse TIG modes) 25 Amps (AC and AC Pulse TIG modes)

0-5555 5-5 TIG (GTAW) Welding

Programming Parameter	Adjustment Device	Display	Factory Setting
Up Slope This parameter operates in (4T) TIG modes only and is used to set the time for the weld current to ramp up, after the torch trigger switch has been depressed then released, from INITIAL CUR to PEAK or BASE current.	TO THE WATER OF THE PARTY OF TH	1.0 (S) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	1 second
Base Current This parameter sets the current at AC or DC TIG mode, and the lowest current at DC or AC pulse TIG mode. This parameter also sets the STICK weld current.	No Justiment	Range: 10 to 205 Amps (DC and AC TIG mode) 10 Amps to peak current (DC and AC Pulse TIG mode)	80 Amps (DC TIG mode) 100 Amps (AC TIG mode) 50 Amps (DC Pulse and AC Pulse TIG modes)
Peak Current This parameter sets the PEAK weld current when in DC or AC Pulse TIG mode.	Lo Justiment	205 (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	100 Amps (DC Pulse and AC Pulse TIG modes)
Pulse Width This parameter sets the percentage on time of the PULSE FREQUENCY for PEAK weld current when in DC or AC Pulse TIG mode.	Washing to the state of the sta	50 (S) (Range: 10 to 90%	50% (DC Pulse and AC Pulse TIG modes)
Pulse Frequency This parameter sets the PULSE FREQUENCY when in DC or AC Pulse TIG mode.	Way servi	200 (S) (%) (P) (Range: 0.2 to 200 Hz	1 Hz
Down Slope This parameter operates in 4T TIG modes only and is used to set the time for the weld current to ramp down, after the torch trigger switch has been pressed, to crater current. This control is used to eliminate the crater that can form at the completion of a weld.	The state of the s	1.0 % Range: 0.0 to 25.0 seconds	1 second

TIG (GTAW) Welding 5-6 0-5555

Programming Parameter	Adjustment	Display	Factory Setting
Crater Current This parameter operates in (4T) TIG modes only and is used to set the finish current for TIG. The CRATER Current remains ON until the torch trigger switch is released after it has been depressed. Note: The maximum crater current available will be limited to the set value of the base current and peak current.	Device	Range: 10 Amps to base current (AC/DC TIG mode) 10 Amps to peak current (AC/DC Pulse TIG mode)	20 Amps
Post Flow This parameter operates in TIG modes only and is used to adjust the post gas flow time once the arc has extinguished. This control is used to dramatically reduce oxidation of the tungsten electrode.	THE WASHINGTON	1.0 Range: 0.5 to 30.0 seconds	3 seconds (DC and DC Pulse TIG modes) 5 seconds (AC and AC Pulse TIG modes)
AC Frequency This parameter operates in AC TIG mode or AC Pulse TIG mode and is used to set the frequency for the AC weld current.	A TANKSOFOL	250 (S) (%) (Hz) Range: 20 to 250 Hz	100 Hz
Wave Balance This parameter operates in AC TIG modes and is used to set the penetration to cleaning action ratio for the AC weld current. The WAVE BALANCE control changes the ratio of penetration to cleaning action of the AC TIG welding arc. Maximum weld penetration is achieved when the WAVE BALANCE control is set to 10%. Maximum cleaning of heavily oxidised aluminium or magnesium alloys is achieved when the WAVE BALANCE control is set to 65%.	A STATE SOLOS	50 (S) (%) (Range: 10 to 65%	35%


Table 5-1

WAVE BALANCE is used for aluminium welding in DC and AC TIG mode

It is used to set the ratio of penetration to cleaning action for the AC TIG welding arc.

Maximum weld penetration is achieved when the WAVE BALANCE is set to 10%. Maximum cleaning of heavily oxidised aluminium or magnesium alloys is achieved when the WAVE BALANCE is set to 65%.

0-5555 5-7 TIG (GTAW) Welding

A-11223

Table 5-2: AC TIG Wave Balance

Factory Reset 5.04

CAUTION

All Welding Parameters will be restored to the factory setting.

To restore to factory settings Press and hold the Multifunction Control Knob and Local and Remote buttons together for more than 3 seconds.

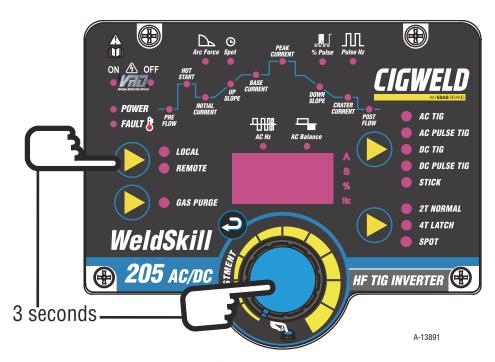


Figure 5-5

Once reset the display will show rSt restored.

then release buttons and knob and factory default settings

TIG (GTAW) Welding 0-5555 5-8

5.05 TIG (GTAW) Basic Welding Technique

Gas Tungsten Arc Welding (GTAW) or TIG (Tungsten Inert Gas) as it is commonly referred to, is a welding process in which fusion is produced by an electric arc that is established between a single tungsten (non-consumable) electrode and the work piece. Shielding is obtained from a welding grade shielding gas or welding grade shielding gas mixture which is generally Argon based. A filler metal may also be added manually in some circumstances depending on the welding application.

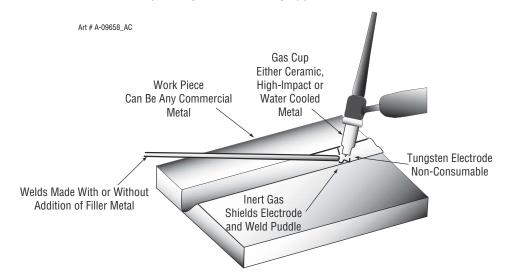


Figure 5-6: TIG Welding Application Shot

Tungsten Electrode Current Ranges

Electrode Diameter	DC Current (Amps)
0.040" (1.0mm)	30-60
1/16" (1.6mm)	60-115
3/32" (2.4mm)	100-165
1/8" (3.2mm)	135-200
5/32" (4.0mm)	190-280
3/16" (4.8mm)	250-340

Table 5-3: Current Ranges for Various Tungsten Electrode Sizes

Guide for Selecting Filler Wire Diameter

Filler Wire Diameter	DC Current Range (Amps)
1/16" (1.6mm)	20-90
3/32" (2.4mm)	65-115
1/8" (3.2mm)	100-165
3/16" (4.8mm)	200-350

Table 5-4: Filler Wire Selection Guide

NOTE!

The operator should use the welding current range values as a guide only, then finally adjust the current setting to suit the application.

0-5555 5-9 TIG (GTAW) Welding

Tungsten Electrode Types

Electrode Type (Ground Finish)	Welding Application	Features	Colour Code
Ceriated 2%	AC & DC welding of mild steel, stainless steel, copper, aluminium, magnesium and their alloys	Longer life, More stable arc, Easier starting, Wider current range, Narrower more concentrated arc.	Grey

Table 5-5

TIG Welding Filler Rods

Aust Std	AWS Std	Part No.	Part No.	Part No.	Type/Application
		1.6mm	2.4mm	3.2mm	
R4	ER70S-4	321411	_	_	For mild-medium strength steels.
R6	ER70S-6	321417	_	_	Pipes, tubing, roll cages, etc.
R2	ER70S-2	321370	_	_	
DDO	EDOOC DO		004070		Fourth discussion of bisch students
KB2	ER805-B2		321379	_	For welding of high strength
RB3	ER90S-B3		321383	_	Cr-Mo steels used at elevated
					temperatures.
R308L	ER308L	321406	321407	_	For stainless steels. Stainless pipes,
R309L	ER309L	321403	321404	_	tubing, architectural uses, etc.
R316L	ER316L	321400	321401	_	
	R4 R6 R2 RB2 RB3 R308L R309L	R4 ER70S-4 R6 ER70S-6 R2 ER70S-2 RB2 ER80S-B2 RB3 ER90S-B3 R308L ER308L R309L ER309L	R4 ER70S-4 321411 R6 ER70S-6 321417 R2 ER70S-2 321370 RB2 ER80S-B2 — RB3 ER90S-B3 — R308L ER308L 321406 R309L ER309L 321403	R4 ER70S-4 321411 — R6 ER70S-6 321417 — R2 ER70S-2 321370 — RB2 ER80S-B2 — 321379 RB3 ER90S-B3 — 321383 R308L ER308L 321406 321407 R309L ER309L 321403 321404	R4 ER70S-4 321411 — — R6 ER70S-6 321417 — — R2 ER70S-2 321370 — — RB2 ER80S-B2 — 321379 — RB3 ER90S-B3 — 321383 — R308L ER308L 321406 321407 — R309L ER309L 321403 321404 —

Table 5-6

Base Metal Thickness	DC Current for Mild Steel	DC Current for Stainless Steel	Tungsten Electrode Diameter	Filler Rod Diameter (if required)	Argon Gas Flow Rate Litres/min	Joint Type
0.040"	35-45	20-30	0.040"	1/16"	5-7	Butt/Corner
1.0mm	40-50	25-35	1.0mm	1.6mm		Lap/Fillet
0.045"	45-55	30-45	0.040"	1/16"	5-7	Butt/Corner
1.2mm	50-60	35-50	1.0mm	1.6mm		Lap/Fillet
1/16"	60-70	40-60	1/16"	1/16"	7	Butt/Corner
1.6mm	70-90	50-70	1.6mm	1.6mm		Lap/Fillet
1/8"	80-100	65-85	1/16"	3/32"	7	Butt/Corner
3.2mm	90-115	90-110	1.6mm	2.4mm		Lap/Fillet
3/16"	115-135	100-125	3/32"	1/8"	10	Butt/Corner
4.8mm	140-165	125-150	2.4mm	3.2mm		Lap/Fillet
1/4"	160-175	135-160	1/8"	5/32"	10	Butt/Corner
6.4mm	170-200	160-180	3.2mm	4.0mm		Lap/Fillet

Table 5-7

TIG Welding is generally regarded as a specialised process that requires operator competency. While many of the principles outlined in the previous Arc Welding section are applicable a comprehensive outline of the TIG Welding process is outside the scope of this Operating Manual. For further information please refer to www. cigweld.com.au or contact Cigweld.

TIG (GTAW) Welding 5-10 0-5555

5.06 TIG (GTAW) Welding Problems

	FAULT		CAUSE		REMEDY
1	Excessive bead build up or poor penetration or poor fusion at edges of weld.		Welding current is too low		Increase weld current and/or faulty joint preparation.
2	Weld bead too wide and flat or undercut at edges of weld or excessive burn through.		Welding current is too high		Decrease weld current.
3	Weld bead too small or insufficient penetration or ripples in bead are widely spaced apart.		Travel speed too fast		Reduce travel speed.
4	Weld bead too wide or excessive bead build up or excessive penetration in butt joint.		Travel speed too slow		Increase travel speed.
5	Uneven leg length in fillet joint		Wrong placement of filler rod		Re-position filler rod.
6	Electrode melts or oxidises when an arc is struck.	А	Torch lead connected to positive welding terminal.	Α	Connect torch lead to negative welding terminal.
		В	No shielding gas flowing to welding region.	В	Check the shielding gas lines for kinks or breaks and shielding gas cylinder contents.
		С	Torch is clogged with dust or dirt.	С	Clean torch.
		D	Shielding gas hose is damaged.	D	Replace shielding gas hose.
		Е	Shielding gas regulator turned off.	Е	Turn On Shielding Gas and adjust Shielding Gas flow rate for the welding job. Refer to Table 5-7 on Page 5-10.
		F	The electrode is too small for the welding current.	F	Increase electrode diameter or reduce the welding current.
7	Dirty weld pool	А	Electrode contaminated by contact with work piece or filler rod material.	А	Clean the electrode by grinding off the contaminates.
		В	Work piece surface has foreign material on it.	В	Clean surface.
		С	Shielding gas contaminated with air.	С	Check shielding gas lines for cuts and loose fitting or change shielding gas cylinder.
8	Poor weld finish		Inadequate shielding gas.		Increase shielding gas flow or check shielding gas line for shielding gas flow problems.

0-5555 5-11 TIG (GTAW) Welding

	FAULT		CAUSE		REMEDY
9	Arc start is not smooth.	А	Tungsten electrode is too large for the welding current.	Α	Select the right size tungsten electrode. Refer to Table 5-3 Cigweld Tungsten Electrode Selection Chart.
		В	The wrong electrode is being used for the welding job.	В	Select the right size tungsten electrode type. Refer to Table 5-3 Cigweld Tungsten Electrode Selection Chart.
		С	Shielding gas flow rate is too high.	С	Select the right shielding gas flow rate for the welding job. Refer to Table 5-7 on page 5-10.
		D	Incorrect shielding gas is being used.	D	Select the correct shielding gas.
		Е	Poor work clamp connection to work piece.	Е	Improve connection to work piece.
10	Arc flutters during TIG welding.		Tungsten electrode is too large for the welding current.		Select the right size tungsten electrode. Refer to Table 5-3 Cigweld Tungsten Electrode Selection Chart.

Table 5-8: TIG (GTAW) Welding Problems

TIG (GTAW) Welding 5-12 0-5555

SECTION 6: STICK (MMAW) WELDING

6.01 Setup For STICK (MMAW) Welding

- A. Select Stick mode with the process selection control (refer to Section 4.02.07 for further information).
- B. Connect the Electrode Holder lead to the positive welding terminal (+). If in doubt, consult the electrode manufacturer. Welding current flows from the Power Source via Dinse type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
- C. Connect the work lead to the negative welding terminal (-). If in doubt, consult the electrode manufacturer. Welding current flows from the power source via Dinse type terminals. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.

WARNING

Before connecting the work clamp to the work and inserting the electrode in the electrode holder make sure the Mains power supply is switched off.

CAUTION

Remove any packaging material prior to use. Do not block the air vents at the front or rear of the Welding Power Source.

NOTE!

Consult the electrode manufacturer's information for the correct polarity.-

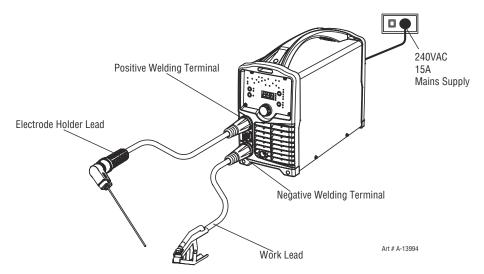


Figure 6-1: Setup For STICK (MMAW) Welding

0-5555 6-1 STICK (MMAW) Welding

6.02 STICK Programming Mode

Press the Process Selection button to select STICK mode.

Use the Multi Function Control to adjust the Parameter selected.

While welding the Multi Function Control directly controls the BASE CURRENT

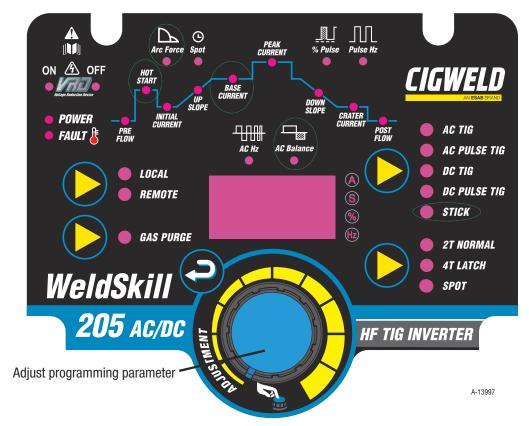


Figure 6-2: Stick Programming Mode

Programming Parameter	Adjustment Device	Display	Factory Setting
Hot Start This parameter operates in all weld modes and is used to heat up the weld zone in TIG modes or improve the start characteristics for stick electrodes the peak start current on top of the BASE (WELD) current. e.g. HOT START current = 130 amps when BASE (WELD) = 100 amps & HOT START = 30 amps	No ustimen	Range: 0 to 70Amps (max 160A weld current)	40 Amps
Base Current This parameter sets the current in DC or AC TIG mode, and the lowest current in DC or AC Pulse TIG mode. This parameter also sets the welding current in STICK mode.	Wantsuco.	160 (S) (Hz) Range: 10 to 160 Amps	120 Amps
Arc Force (STICK Mode only) Arc Force is effective when in Stick Mode only. Arc Force control provides and adjustable amount of Arc Force (or "dig") control. This feature can be particularly beneficial in providing the operator the ability to compensate for variability in joint fit-up in certain situations with particular electrodes. In general increasing the Arc Force control toward 100% (maximum Arc Force) allows greater penetration control to be achieved.	No nezwest	50 (S) (Hz) (Range: 0 to 100%	30%

Table 6-1

Refer to Section 5.04 on Page 5-8 for Factory Reset Procedure.

6.03 Arc Welding Electrodes

Metal arc welding electrodes consist of a core wire surrounded by a flux coating. The flux coating is applied to the core wire by an extrusion process.

The coating on arc welding electrodes serves a number of purposes:

- A. To provide a gaseous shield for the weld metal, and preserve it from contamination by the atmosphere whilst in a molten state.
- B. To give a steady arc by having 'arc stabilisers' present, which provide a bridge for current to flow across.
- C. To remove oxygen from the weld metal with 'deoxidisers'.
- D. To provide a cleansing action on the work piece and a protective slag cover over the weld metal to prevent the formation of oxides while the metal is solidifying. The slag also helps to produce a bead of the desired contour.
- E. To introduce alloys into the weld deposits in special type electrodes.

0-5555 6-3 STICK (MMAW) Welding

6.04 Types of Electrodes

Arc Welding electrodes are classified into a number of groups depending on their applications. There are a great number of electrodes used for specialised industrial purposes which are not of particular interest for everyday general work. These include some low hydrogen types for high tensile steel, cellulose types for welding large diameter pipes, etc.

The range of electrodes dealt with in this publication will cover the vast majority of applications likely to be encountered; are all easy to use and all will work on even the most basic of welding machines.

	CIGWELD Electrode Selection Chart								
Description	Diameter	Pack	Part No.	Application					
	2.5mm	1kg	322135						
	2.5mm	2.5kg	612182	General purpose electrode suitable for all positional					
Satincraft 13	3.2mm	1kg	322136	welding and galvanised steel.					
	3.2mm	2.5kg	612183	wording and garvanised steel.					
	4.0mm	5kg	611184						
	2.5mm	1kg	322129	General purpose, extra performance electrode					
Ferrocraft 12XP	2.5mm	2.5kg	612232	recommended for all positional (inc. Vertical down)					
	3.2mm	2.5kg	612233	welding of mild and galvanised steel.					
	4.0mm	5kg	611234						
	2.0mm	1 kg	WEG1020						
	2.0mm	2.5 kg	WEG2520						
	2.5mm	1 kg	WEG1025 WEG2525	User-friendly GP electrode for welding thin section					
WeldSkill GP	2.5mm 2.5mm	2.5 kg 5 kg	WEG5025	mild and galvanised steels. Excellent for vertical					
	3.2mm	1 kg	WEG1032	down fillet welding applications.					
	3.2mm	2.5 kg	WEG2532						
	3.2mm	5 kg	WEG5032						
	2.5mm	1.8 kg	53162534G1						
OK 53.16	3.2mm	1.6 kg	53163234G0	Hydrogen Controlled type offering exceptional AC/DC					
Spezial	4.0mm	2.2 kg	53164044G0	performance in all welding positions.					
Satincrome	2.5mm	2.5 kg	611602	Stainless Steel type for 19Cr/10Ni stainless grades					
308L-17	3.2mm	2.5 kg	611603	including 201, 202, 301, 302, 303, 304, 304L, 305,					
300L 17	3.211111	2.5 kg		308, etc					
Satincrome	2.5mm	2.5 kg	611692	Stainless Steel type for 309 and 309L grades. It is					
309Mo-17	3.2mm	2.5 kg	611693	also suitable for welding of dissimilar welding of					
0031010 17	4.0mm	2.5 kg	611694	other 300 series stainless steels.					
	2.0mm	2,5 kg	611661						
0-4:	2.5mm	2.5 kg	611662	Otainlana Otani tura fan walding af matahing Ma					
Satincrome 316L-17	3.2mm	2.5 kg	611663	Stainless Steel type for welding of matching Mobearing grades, 316 and 316L.					
310L-17	2.5/3.2mm	Blisterpack	322215	bearing grades, 510 and 510L.					
	4.0mm	2.5 kg	611664						
	2.5mm	2.5 kg	611702						
Moldell	3.2mm	2.5 kg	611703	High alloy stainless steel type for welding of unknown					
Weldall	2.5/3.2mm	Blisterpack	322216	steels, repair of die or tool steels and for joining dissimilar steels. (Not recommended for cast iron).					
	4.0mm	2.5 kg	611704	uissiiilliai steets. (Not recommended for cast nom).					
				For repair and maintenance welding of S.G. cast iron,					
Castcraft 55	3.2mm	2.5 kg	611723	meehanite and other cast irons. It produces a higher					
				strength weld than Castcraft 100.					
	2.5mm	2.5 kg	611732	Coft Dustile Niekel type electrode for received					
Castoraft 100	3.2mm	2.5 kg	611733	Soft, Ductile Nickel type electrode for repair and maintenance welding of a wide range of cast irons. It					
Castcraft 100	2.5/3.2mm	Blisterpack	322217	has better "wetting" action than Castcraft 55.					
	4.0mm	2.5 kg	611734	nas sector wetting action than oasterart so.					

Table 6-2 Types of Electrodes

6.05 Size of Electrode

The electrode size is determined by the thickness of metals being joined and can also be governed by the type of welding machine available. Small welding machines will only provide sufficient current (amperage) to run the smaller size electrodes.

For most work, a 2.5mm electrode will be quite sufficient. A 2.5mm electrode will give just as strong a joint but may require a few more weld runs to be put down to fill the joint.

For thin sections, it is necessary to use smaller electrodes otherwise the arc may burn holes through the job. A little practice will soon establish the most suitable electrode for a given application.

6.06 Storage of Electrodes

Always store electrodes in a dry place and in their original containers.

6.07 Electrode Polarity

Electrodes are connected to the Electrode Holder, and the Work Lead is connected to the work piece. Consult the Electrode manufacturer's information for the correct polarity.

6.08 Effects of Arc Welding Various Materials

A. High tensile and alloy steels

The two most prominent effects of welding these steels are the formation of a hardened zone in the weld area, and, if suitable precautions are not taken, the occurrence in this zone of under-bead cracks may result. Hardened zone and under-bead cracks in the weld area may be reduced by using the correct electrodes, pre-heating, using higher current settings, using larger electrodes sizes, short runs for larger electrode deposits or tempering in a furnace.

B. Austenitic manganese steels

The effect on manganese steel of slow cooling from high temperatures is to embrittle it. For this reason it is absolutely essential to keep manganese steel cool during welding by quenching after each weld or skip welding to distribute the heat.

C. Cast Iron

Most types of cast iron, except white iron, are weldable. White iron, because of its extreme brittleness, generally cracks when attempts are made to weld it. Trouble may also be experienced when welding white-heart malleable, due to the porosity caused by gas held in this type of iron.

D. Copper and alloys

The most important factor is the high rate of heat conductivity of copper, making preheating of heavy sections necessary to give proper fusion of weld and base metal.

6.09 Arc Welding Practice

The techniques used for arc welding are almost identical regardless of what types of metals are being joined. Naturally enough, different types of electrodes would be used for different metals as described in the preceding section.

6.10 Welding Position

The electrodes dealt with in this publication can be used in most positions, i.e. they are suitable for welding in flat, horizontal, vertical and overhead positions. Numerous applications call for welds to be made in positions intermediate between these. Some of the common types of welds are shown in Figures 6-3 through 6-10.

0-5555 6-5 STICK (MMAW) Welding

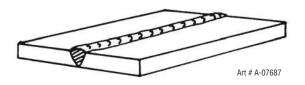


Figure 6-3: Flat position, down hand butt weld

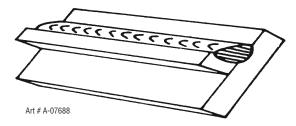


Figure 6-4: Flat position, gravity fillet weld

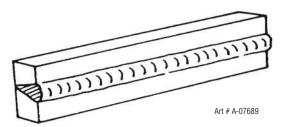


Figure 6-5: Horizontal position, butt weld

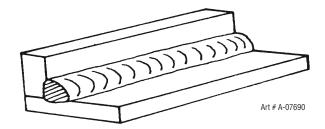


Figure 6-6: Horizontal - Vertical (HV) position

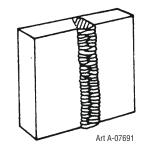


Figure 6-7: Vertical position, butt weld

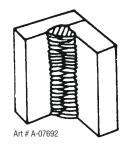


Figure 6-8: Vertical position, fillet weld

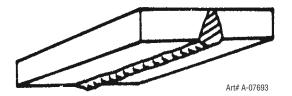


Figure 6-9: Overhead position, butt weld

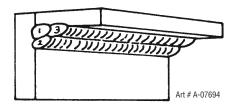


Figure 6-10: Overhead position fillet, weld

6.11 Joint Preparations

In many cases, it will be possible to weld steel sections without any special preparation. For heavier sections and for repair work on castings, etc., it will be necessary to cut or grind an angle between the pieces being joined to ensure proper penetration of the weld metal and to produce sound joints.

In general, surfaces being welded should be clean and free of rust, scale, dirt, grease, etc. Slag should be removed from oxy-cut surfaces. Typical joint designs are shown in Figure 6-11.

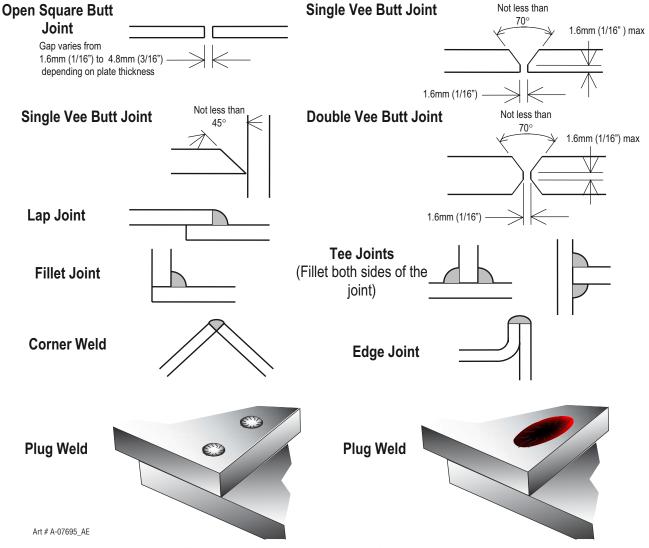


Figure 6-11: Typical joint designs for arc welding

6.12 Arc Welding Technique

A Word to Beginners

For those who have not yet done any welding, the simplest way to commence is to run beads on a piece of scrap plate. Use mild steel plate about 6.0mm thick and a 3.2mm electrode. Clean any paint, loose scale or grease off the plate and set it firmly on the work bench so that welding can be carried out in the downhand position. Make sure that the work clamp is making good electrical contact with the work, either directly or through the work table. For light gauge material, always clamp the work lead directly to the job, otherwise a poor circuit will probably result.

6.13 The Welder

Place yourself in a comfortable position before beginning to weld. Get a seat of suitable height and do as much work as possible sitting down. Don't hold your body tense. A taut attitude of mind and a tensed body will soon make you feel tired. Relax and you will find that the job becomes much easier. You can add much to your peace of mind by wearing a leather apron and gauntlets. You won't be worrying then about being burnt or sparks setting alight to your clothes.

Place the work so that the direction of welding is across, rather than to or from, your body. The electrode holder lead should be clear of any obstruction so that you can move your arm freely along as the electrode burns down. If the lead is slung over your shoulder, it allows greater freedom of movement and takes a lot of weight off your hand. Be sure the insulation on your cable and electrode holder is not faulty, otherwise you are risking an electric shock.

0-5555 6-7 STICK (MMAW) Welding

6.14 Striking the Arc

Practice this on a piece of scrap plate before going on to more exacting work. You may at first experience difficulty due to the tip of the electrode "sticking" to the work piece. This is caused by making too heavy a contact with the work and failing to withdraw the electrode quickly enough. A low amperage will accentuate it. This freezing-on of the tip may be overcome by scratching the electrode along the plate surface in the same way as a match is struck. As soon as the arc is established, maintain a 1.6mm to 3.2mm gap between the burning electrode end and the parent metal. Draw the electrode slowly along as it melts down.

Another difficulty you may meet is the tendency, after the arc is struck, to withdraw the electrode so far that the arc is broken again. A little practice will soon remedy both of these faults.

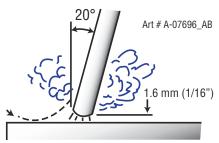


Figure 6-12: Striking an arc

6.15 Arc Length

The securing of an arc length necessary to produce a neat weld soon becomes almost automatic. You will find that a long arc produces more heat. A very long arc produces a crackling or spluttering noise and the weld metal comes across in large, irregular blobs. The weld bead is flattened and spatter increases. A short arc is essential if a high quality weld is to be obtained although if it is too short there is the danger of it being blanketed by slag and the electrode tip being solidified in. If this should happen, give the electrode a quick twist back over the weld to detach it. Contact or "touch-weld" electrodes such as Ferrocraft 21 do not stick in this way, and make welding much easier.

6.16 Rate of Travel

After the arc is struck, your next concern is to maintain it, and this requires moving the electrode tip towards the molten pool at the same rate as it is melting away. At the same time, the electrode has to move along the plate to form a bead. The electrode is directed at the weld pool at about 20° from the vertical. The rate of travel has to be adjusted so that a well-formed bead is produced.

If the travel is too fast, the bead will be narrow and strung out and may even be broken up into individual globules. If the travel is too slow, the weld metal piles up and the bead will be too large.

6.17 Making Welded Joints

Having attained some skill in the handling of an electrode, you will be ready to go on to make up welded joints.

NOTE!

The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrode, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide, then finally adjust the current setting to suit the application.

A. Butt Welds

Set up two plates with their edges parallel, as shown in Figure 6-13, allowing 1.6mm to 2.4mm gap between them and tack weld at both ends. This is to prevent contraction stresses from the cooling weld metal pulling the plates out of alignment. Plates thicker than 6.0mm should have their mating edges bevelled to form a 70° to 90° included angle. This allows full penetration of the weld metal to the root. Using a 3.2mm Ferrocraft 21 electrode at 100 amps, deposit a run of weld metal on the bottom of the joint.

Do not weave the electrode, but maintain a steady rate of travel along the joint sufficient to produce a well-formed bead. At first you may notice a tendency for undercut to form, but keeping the arc length short, the angle of the electrode at about 20° from vertical, and the rate of travel not too fast, will help eliminate this. The electrode needs to be moved along fast enough to prevent the slag pool from getting ahead of the arc. To complete the joint in thin plate, turn the job over, clean the slag out of the back and deposit a similar weld.

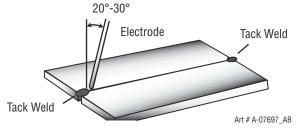


Figure 6-13: Butt weld

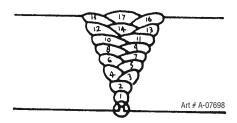


Figure 6-14: Weld build up sequence

Heavy plate will require several runs to complete the joint. After completing the first run, chip the slag out and clean the weld with a wire brush. It is important to do this to prevent slag being trapped by the second run. Subsequent runs are then deposited using either a weave technique or single beads laid down in the sequence shown in Figure 6-14. The width of weave should not be more than three times the core wire diameter of the electrode. When the joint is completely filled, the back is either machined, ground or gouged out to remove slag which may be trapped in the root, and to prepare a suitable joint for depositing the backing run. If a backing bar is used, it is not usually necessary to remove this, since it serves a similar purpose to the backing run in securing proper fusion at the root of the weld.

B. Fillet Welds

These are welds of approximately triangular crosssection made by depositing metal in the corner of two faces meeting at right angles. Refer to Figure 6-4.

A piece of angle iron is a suitable specimen with which to begin, or two lengths of strip steel may be tacked together at right angles. Using a 3.2mm Ferrocraft 21 electrode at 100 amps, position angle iron with one leg horizontal and the other vertical. This is known as a horizontal-vertical (HV) fillet. Strike the arc and immediately bring the electrode to a position perpendicular to the line of the fillet and about 45° from the vertical. Some electrodes require to be sloped about 20° away from the perpendicular position to prevent slag from running ahead of the weld. Refer to Figure 6-15. Do not attempt to build up much larger than 6.4mm width with a 3.2mm electrode, otherwise the weld metal tends to sag towards the base, and undercut forms on the vertical leg. Multi-runs can be made as shown in Figure 6-16. Weaving in HV fillet welds is undesirable.

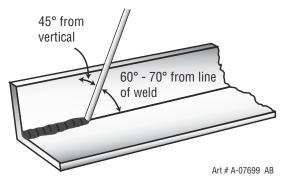


Figure 6-15: Electrode position for HV fillet weld

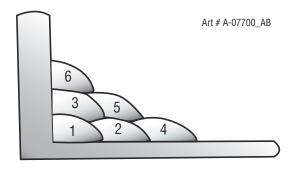


Figure 6-16: Multi-runs in HV fillet weld

C. Vertical Welds

1. Vertical Up

Tack weld a three feet length of angle iron to your work bench in an upright position. Use a 3.2mm Ferrocraft 21 electrode and set the current at 100 amps. Make yourself comfortable on a seat in front of the job and strike the arc in the corner of the fillet. The electrode needs to be about 10° from the horizontal to enable a good bead to be deposited. Refer Figure 6-17. Use a short arc, and do not attempt to weave on the first run. When the first run has been completed de-slag the weld deposit and begin the second run at the bottom. This time a slight weaving motion is necessary to cover the first run and obtain good fusion at the edges. At the completion of each side motion, pause for a moment to allow weld metal to build up at the edges, otherwise undercut will form and too much metal will accumulate in the centre of the weld. Figure 6-18 illustrates multi-run technique and Figure 6-19 shows the effects of pausing at the edge of weave and of weaving too rapidly.

0-5555 6-9 STICK (MMAW) Welding

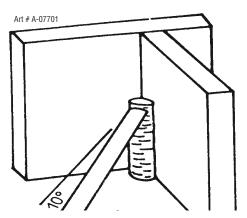


Figure 6-17: Single run vertical fillet weld

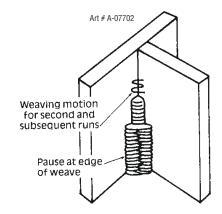


Figure 6-18: Multi run vertical fillet weld

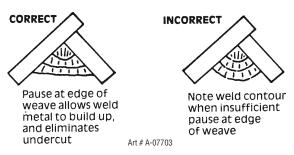


Figure 6-19: Examples of vertical fillet welds

2. Vertical Down

The Ferrocraft 21 electrode makes welding in this position particularly easy. Use a 3.2mm electrode at 100 amps. The tip of the electrode is held in light contact with the work and the speed of downward travel is regulated so that the tip of the electrode just keeps ahead of the slag. The electrode should point upwards at an angle of about 45°.

3. Overhead Welds

Apart from the rather awkward position necessary, overhead welding is not much more difficult that downhand welding. Set up a specimen for overhead welding by first tacking

a length of angle iron at right angles to another piece of angle iron or a length of waste pipe. Then tack this to the work bench or hold in a vice so that the specimen is positioned in the overhead position as shown in the sketch. The electrode is held at 45° to the horizontal and tilted 10° in the line of travel (Figure 6-20). The tip of the electrode may be touched lightly on the metal, which helps to give a steady run. A weave technique is not advisable for overhead fillet welds. Use a 3.2mm Ferrocraft 12XP electrode at 100 amps, and deposit the first run by simply drawing the electrode along at a steady rate. You will notice that the weld deposit is rather convex, due to the effect of gravity before the metal freezes.

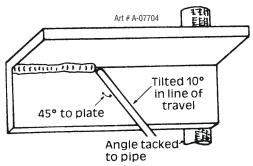


Figure 6-20: Overhead fillet weld

6.18 Distortion

Distortion in some degree is present in all forms of welding. In many cases it is so small that it is barely perceptible, but in other cases allowance has to be made before welding commences for the distortion that will subsequently occur. The study of distortion is so complex that only a brief outline can be attempted hear.

6.19 The Cause of Distortion

Distortion is cause by:

A. Contraction of Weld Metal:

Molten steel shrinks approximately 11 per cent in volume on cooling to room temperature. This means that a cube of molten metal would contract approximately 2.2 per cent in each of its three dimensions. In a welded joint, the metal becomes attached to the side of the joint and cannot contract freely. Therefore, cooling causes the weld metal to flow plastically, that is, the weld itself has to stretch if it is to overcome the effect of shrinking volume and still be attached to the edge of the joint. If the restraint is very great, as, for example, in a heavy section of plate, the weld metal may crack. Even in cases where the weld metal does not crack, there will still remain stresses "locked-up" in the structure. If the joint material is relatively weak, for example, a butt joint in 2.0mm sheet, the contracting weld metal may cause the sheet to become distorted.

B. Expansion and Contraction of Parent Metal in the Fusion Zone:

While welding is proceeding, a relatively small volume of the adjacent plate material is heated to a very high temperature and attempts to expand in all directions. It is able to do this freely at right angles to the surface of the plate (i.e., "through the weld"), but when it attempts to expand "across the weld" or "along the weld", it meets considerable resistance, and to fulfil the desire for continued expansion, it has to deform plastically, that is, the metal adjacent to the weld is at a high temperature and hence rather soft, and, by expanding, pushes against the cooler, harder metal further away, and tends to bulge (or is "upset"). When the weld area begins to cool, the "upset" metal attempts to contract as much as it expanded, but, because it has been "upset", it does not resume its former shape, and the contraction of the new shape exerts a strong pull on adjacent metal. Several things can then happen.

The metal in the weld area is stretched (plastic deformation), the job may be pulled out of shape by the powerful contraction stresses (distortion), or the weld may crack, in any case, there will remain "locked-up" stresses in the job. Figures 6-21 and 6-22 illustrate how distortion is created.

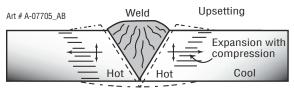


Figure 6-21: Parent metal expansion

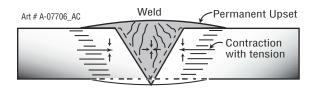


Figure 6-22: Parent metal contraction

0-5555 6-11 STICK (MMAW) Welding

6.20 Overcoming Distortion Effects

There are several methods of minimising distortion effects.

A. Peening

This is done by hammering the weld while it is still hot. The weld metal is flattened slightly and because of this the tensile stresses are reduced a little. The effect of peening is relatively shallow, and is not advisable on the last layer.

B. Distribution of Stresses

Distortion may be reduced by selecting a welding sequence which will distribute the stresses suitably so that they tend to cancel each other out. See Figures 6-25 through 6-28 for various weld sequences. Choice of a suitable weld sequence is probably the most effective method of overcoming distortion, although an unsuitable sequence may exaggerate it. Simultaneous welding of both sides of a joint by two welders is often successful in eliminating distortion.

C. Restraint of Parts

Forcible restraint of the components being welded is often used to prevent distortion. Jigs, positions, and tack welds are methods employed with this in view.

D. Presetting

It is possible in some cases to tell from past experience or to find by trial and error (or less frequently, to calculate) how much distortion will take place in a given welded structure. By correct pre-setting of the components to be welded, constructional stresses can be made to pull the parts into correct alignment. A simple example is shown in Figure 6-23.

E. Preheating

Suitable preheating of parts of the structure other than the area to be welded can be sometimes used to reduce distortion. Figure 6-24 shows a simple application. By removing the heating source from b and c as soon as welding is completed, the sections b and c will contract at a similar rate, thus reducing distortion.

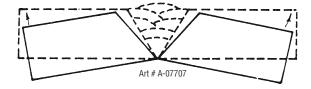
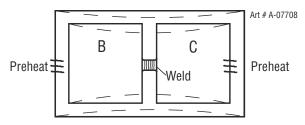



Figure 6-23: Principle of presetting

Dotted lines show effect if no preheat is used

Figure 6-24: Reduction of distortion by preheating

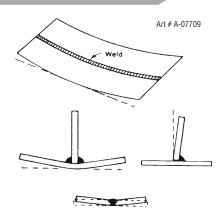


Figure 6-25: Examples of distortion

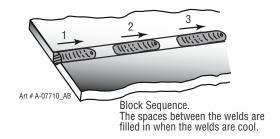


Figure 6-26: Welding sequence

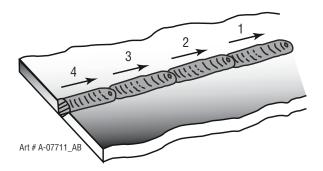


Figure 6-27: Step back sequence

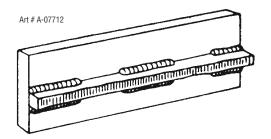


Figure 6-28: Chain intermittent welding

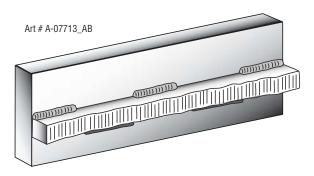


Figure 6-29: Staggered intermittent welding

0-5555 6-13 STICK (MMAW) Welding

6.21 Welding Problems

Description	Possible Cause	Remedy	
1 Gas pockets or voids in weld metal	A Electrodes are damp	A Dry electrodes before use	
(Porosity)			
	B Welding current is too high	B Reduce welding current	
	C Surface impurities such as oil,	C Clean joint before welding	
	grease, paint, etc		
2 Crack occurring in weld metal soon after solidification commences	A Rigidity of joint	A Redesign to relieve weld joint of severe stresses or use crack resistance electrodes	
	B Insufficient throat thickness	B Travel slightly slower to alloy greater build-up in throat	
	C Cooling rate is too high	C Preheat plate and cool slowly	
3 A gap is left by failure of the weld metal to fill the root of the weld	A Welding current is too low	A Increase welding current	
	B Electrode too large for joint	B Use smaller diameter electrode	
	C Insufficient gap	C Allow wider gap	
	D Incorrect sequence	D Use correct build-up sequence	
	Art # A-05866_A	C	
	Incorrect Sequence		
Figure 6-30: Example of Insufficient Gap or Incorrect Sequence 4 Portions of the weld run do not fuse A Small electrodes used on A Use larger electrodes and			
to the surface of the metal or edge of	heavy cold plate	A Use larger electrodes and preheat the plate	
the joint	B Welding current is too low	B Increase welding current	
	C Wrong electrode angle	C Adjust angle so the welding arc is directed more into the base metal	
	D Travel speed of electrode is too high	D Reduce travel speed of electrode	
	E Scale or dirt on joint surface	E Clean surface before	

welding

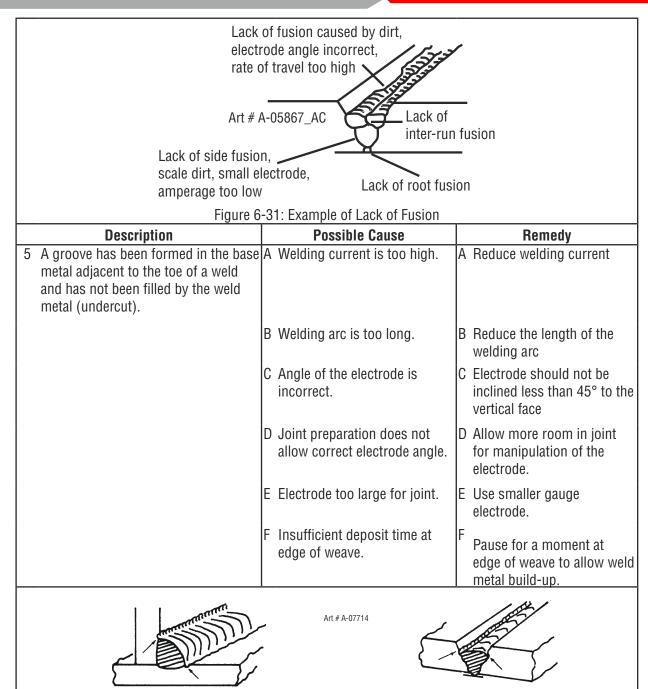


Figure 6-32: Examples of undercut

0-5555 6-15 STICK (MMAW) Welding

Description	Possible Cause	Remedy
6 Non-metallic particles are trapped in the weld metal (slag inclusion)	A Non-metallic particles may be trapped in undercut from previous run	A If bad undercut is present, clean slag out and cover with a run from a smaller diameter electrode
	B Joint preparation too restricted	B Allow for adequate penetration and room for cleaning out the slag
	C Irregular deposits allow slag to be trapped	C If very bad, chip or grind out irregularities
	D Lack of penetration with slag trapped beneath weld bead	D Use smaller electrode with sufficient current to give adequate penetration. Use suitable tools to remove all slag from corners
	E Rust or mill scale is preventing full fusion	E Clean joint before welding
	F Wrong electrode for position in which welding is done	F Use electrodes designed for position in which welding is done, otherwise proper control of slag is difficult
Not cleaned, or incorrect electrode	Slag trapped in undercut	oot .
	Art # A-05868_AC	
Figure 6	6-33: Examples of Slag Inclusion	

Table 6-3: Welding Problems

SECTION 7: ROUTINE SERVICE REQUIREMENTS AND POWER SOURCE PROBLEMS

7.01 Routine Maintenance & Inspection

WARNING

There are extremely dangerous voltage and power levels present inside this product. Do not attempt to open or repair unless you are a qualified electrical tradesperson. Disconnect the Welding Power Source from the Mains Supply Voltage before disassembling.

Welding equipment should be regularly checked by a qualified electrical tradesperson to ensure that:

- The main earth wire of the electrical installation is intact.
- Power point for the Welding Power Source is effectively earthed and of adequate current rating.
- Plugs and cord extension sockets are correctly wired.
- Flexible cord is of the 3-core tough rubber or plastic sheathed type of adequate rating, correctly connected and in good condition.
- Welding terminals are shrouded to prevent inadvertent contact or short circuit.
- The frame of the Welding Power Source is effectively earthed.
- Welding leads and electrode holder are in good condition.
- The Welding Power Source is clean internally, especially from metal filing, slag, and loose material. If any parts are damaged for any reason, replacement is recommended.

7.02 Cleaning the Welding Power Source

WARNING

There are extremely dangerous voltage and power levels present inside this product. Do not attempt to open or repair unless you are a qualified electrical tradesperson. Disconnect the Welding Power Source from the Mains Supply Voltage before disassembling.

To clean the Welding Power Source, open the enclosure and use a vacuum cleaner to remove any accumulated dirt, metal filings, slag and loose material. Keep the shunt and lead screw surfaces clean as accumulated foreign material may reduce the welders output welding current.

CAUTION

Do not use compressed air to clean the Welding Power Source. Compressed air can force metal particles to lodge between live electrical parts and earthed metal parts within the Welding Power Source. This may result in arcing between this parts and their eventual failure.

7.03 Basic Troubleshooting

WARNING

There are extremely dangerous voltage and power levels present inside this product. Do not attempt to open or repair unless you are a qualified electrical tradesperson and you have had training in power measurements and trouble-shooting techniques.

If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited CIGWELD Service Agent for repair.

The basic level of troubleshooting is that which can be performed without special equipment or knowledge.

0-5555 7-1 SERVICE

7.04 Welding Power Source Problems

	FAULT		CAUSE		REMEDY
1	Mains Supply Voltage is On, the On/Off switch on the rear panel is in the On position	А	Power source is not in the correct mode of operation.	А	Set the power source to the correct mode of operation with the process selection switch.
	and the Power indicator on the front panel is illuminated however the power source	В	TIG Torch 8 Pin Control Plug not connected correctly or loose/faulty connection in plug.	В	Connect 8 Pin TIG Torch control plug securely and correctly to the 8 Pin control socket of the front of
	will not TIG weld.	С	Work Lead is not connected to the Work Piece.	С	the Power Source. Ensure that the Work Lead is connected to the work piece and has a good connection to the work piece. Refer to Set Up for TIG Section 5.02.
		D	Faulty TIG torch trigger.	D	Repair or replace torch trigger switch/lead.
2	Mains Supply Voltage is On, the On/Off switch on the rear panel is in the On position and the Power indicator on the front panel is illuminated however the power source will not STICK weld.		Power source is not in the correct mode of operation. Work Lead is not connected to the work piece.	В	Set the power source to STICK mode. Refer to Section 6.01. Ensure that the Work Lead is connected to the work piece and has a good connection to the work piece.
3	Fault Indicator is illuminated and unit will not commence welding when the torch trigger switch is depressed.		Duty cycle of power source has been exceeded.		Leave the power source switched ON and allow it to cool. Note that fault indicator must be extinguished prior to commencement of welding.
4	Welding output continues when TIG torch trigger released.	A B	Trigger mode selection is in 4T (LATCH) mode. TIG torch trigger leads shorted.	A B	Change to 2T (NORMAL) mode. Repair or replace TIG torch / trigger lead.
5	Mains Supply Voltage is On, the On/Off switch in the rear panel is in the On position but the Power On indicator on the front panel is flashing and the digital display and other indicators on the front panel are not illuminated and the power source will not weld.		This may occur due to the activation of an in-built protective device if the Power Source is repeatedly switched On then Off rapidly or the supply to the Power Source is switched On then Off rapidly.		If this occurs leave the Power Source On/Off switch in the Off position for several minutes to allow the protective device to reset.
6	TIG electrode melts when		TIG torch is connected to		Connect the TIG torch to the (-) VE terminal.
7	arc is struck. Arc flutters during TIG welding.		the (+) VE terminal. Tungsten electrode is too large for the welding current.		Select the correct size of tungsten electrode.
8	No HF output.		HF Circuit faulty		Have an Accredited CIGWELD Service Provider check HF circuit.

Table 7-1

SERVICE 7-2 0-5555

SECTION 8: KEY SPARE PARTS

8.01 WeldSkill 205AC/DC Key Spare Parts

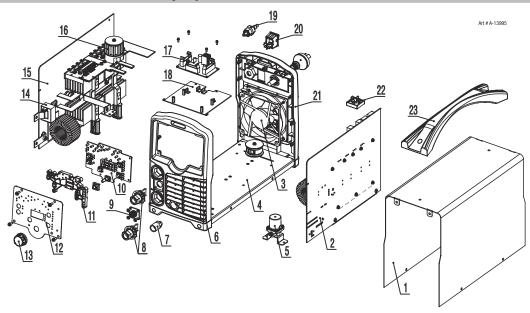


Figure 8-1

WELDSKILL 205AC/DC POWER SOURCE KEY SPARE PARTS				
ITEM	PART NUMBER	DESCRIPTION		
1	W7006923	Top and Side Panel		
2	W7006913	PCBA Primary Inverter		
3	W7006929	Fan Assembly		
4	W7006924	Base Panel		
5	W7006914	Gas Solenoid Assembly		
6	W7006925	Front Panel		
7	W7006915	Gas Outlet		
8	W7006852	Socket Dinse 50mm2		
9	W7006917	8 Pin Control Socket (socket and pins only)		
10	W7006916	PCBA Display		
11	W7006927	Display Indicators Cover		
12	W7006928	Display PCB Mounting Plate		
13	W7006807	Multifunction Control Knob		
14	W7006918	Hall Current Sensor		
15	W7006919	PCBA Secondary Inverter		
16	W7006920	EMC Filter		
17	W7006921	PCBA Control		
18	W7006922	PCBA Filter		
19	W7006854	Gas Inlet		
20	W7006810	ON/OFF Switch		
21	W7006926	Rear Panel		
22	W7006829	Input Rectifier		
23	CSP337038	Handle		

Table 8-1

8.02 TIG Torch 8m (P/N W4014605) Key Spare Parts

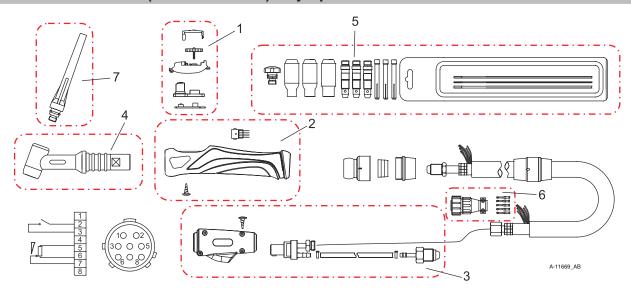


Figure 8-2

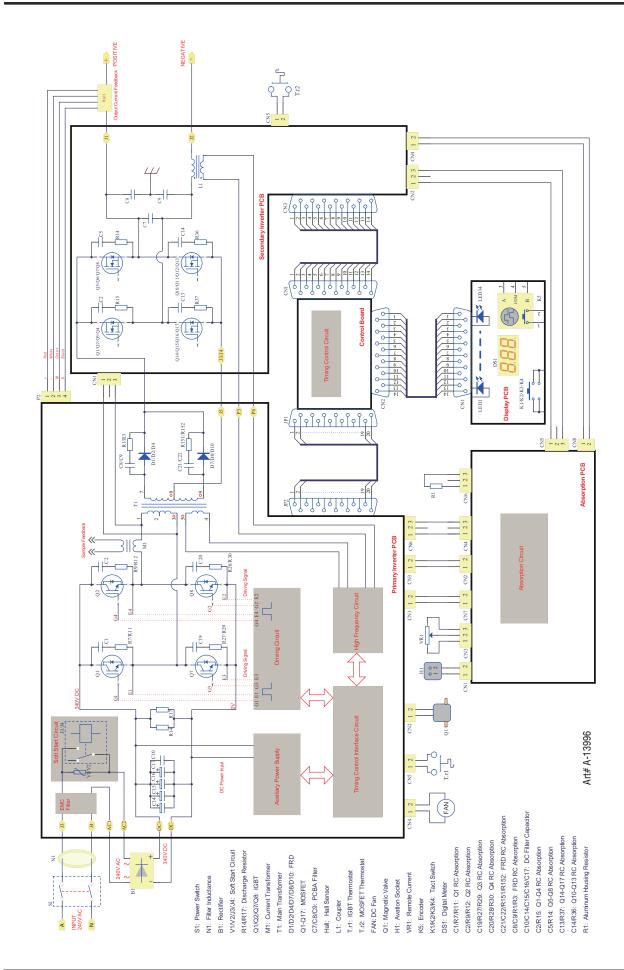

TIG TORCH SPARE PARTS				
ITEM	PART NO.	DESCRIPTION		
1	W7005900	Trigger assembly for 26F torch		
2	W7005901	Handle assembly for 26F torch		
3	W7005902	Dinse 50mm for 26F torch		
4	W7005903	Flex head for 26F torch		
5	BGSAK2	Tig accessory Kit*		
6	UOA706900	Cable Plug 8 pin		
7	BG57Y02/R	Back Cap (Long)		

Table 8-2

KEY SPARE PARTS 8-2 0-5555

^{*}Not identical to the standard Accessories Kit supplied with TIG Torch.

APPENDIX: WELDSKILL 205AC/DC CIRCUIT DIAGRAM

This Page Intentionally Blank.

APPENDIX 0-5555 A-2

CIGWELD - LIMITED WARRANTY TERMS

LIMITED WARRANTY: CIGWELD Pty Ltd, An ESAB Brand, hereafter, "CIGWELD" warrants to customers of its authorized distributors hereafter "Purchaser" that its products will be free of defects in workmanship or material. Should any failure to conform to this warranty appear within the time period applicable to the CIGWELD products as stated below, CIGWELD shall, upon notification thereof and substantiation that the product has been stored, installed, operated, and maintained in accordance with CIGWELD's specifications, instructions, recommendations and recognized standard industry practice, and not subject to misuse, repair, neglect, alteration, or accident, correct such defects by suitable repair or replacement, at CIGWELD's sole option, of any components or parts of the product determined by CIGWELD to be defective.

CIGWELD MAKES NO OTHER WARRANTY, EXPRESS OR IMPLIED. THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHERS. INCLUDING. BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

LIMITATION OF LIABILITY: CIGWELD SHALL NOT UNDER ANY CIRCUMSTANCES BE LIABLE FOR SPECIAL, INDI-RECT OR CONSEQUENTIAL DAMAGES, SUCH AS, BUT NOT LIMITED TO, LOST PROFITS AND BUSINESS INTER-RUPTION. The remedies of the Purchaser set forth herein are exclusive and the liability of CIGWELD with respect to any contract, or anything done in connection therewith such as the performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of any goods covered by or furnished by CIGWELD whether arising out of contract, negligence, strict tort, or under any warranty, or otherwise, shall not, except as expressly provided herein, exceed the price of the goods upon which such liability is based. No employee, agent, or representative of CIGWELD is authorized to change this warranty in any way or grant any other warranty.

PURCHASER'S RIGHTS UNDER THIS WARRANTY ARE VOID IF REPLACEMENT PARTS OR ACCESSORIES ARE USED WHICH IN CIGWELD'S SOLE JUDGEMENT MAY IMPAIR THE SAFETY OR PERFORMANCE OF ANY CIGWELD PRODUCT. PURCHASER'S RIGHTS UNDER THIS WARRANTY ARE VOID IF THE PRODUCT IS SOLD TO PURCHASER BY NON-AUTHORIZED PERSONS.

The warranty is effective for the time stated below beginning on the date that the authorized distributor delivers the products to the Purchaser. Notwithstanding the foregoing, in no event shall the warranty period extend more than the time stated plus one year from the date CIGWELD delivered the product to the authorized distributor.

Any claim under this warranty must be made within the warranty period which commences on the date of purchase of the product. To make a claim under the warranty, take the product (with proof of purchase from a Cigweld Accredited Seller) to the store where you purchased the product or contact Cigweld Customer Care 1300 654 674 for advice on your nearest Service Provider. CIGWELD reserves the right to request documented evidence of date of purchase. CIGWELD or our Accredited Distributor must be notified in writing of its claim within seven (7) days of becoming aware of the basis thereof, and at its own expense returning the goods which are the subject of the claim to CIGWELD or nominated Accredited Distributor/Accredited Service Provider

This warranty is given.

Cigweld Pty Ltd

A.B.N. 56007226815

71 Gower Street, Preston

Victoria, Australia, 3072

Phone: 1300 654 674

Email: enquiries@ciaweld.com.au

Website: www.cigweld.com.au

This warranty is provided in addition to other rights and remedies you have under law: Our goods come with guarantees which cannot be excluded under the Australian Consumer Law. You are entitled to replacement or refund for a major failure and to compensation for other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

Please note that the information detailed in this statement supersedes any prior published data produced by CIGWELD.

WARRANTY SCHEDULE – WELDSKILL 205AC/DC INVERTERS

WARRANTY	WARRANTY PERIOD – (Parts and Labour)
WeldSkill 205AC/DC Inverter Power Source	3 Years
ACCESSORIES	WARRANTY PERIOD
TIG torch, electrode holder lead and work lead	3 Months
TIG torch consumable items	NIL
Gas regulator/flowmeter (excluding seat assembly, pressure gauges, elastomer seals and "O" rings	3 Years
Regulator seat assemblies and pressure gauges	12 Months
Elastomer seals and "O" rings used in the equipment	3 Months

CIGWELD Limited Warranty does not apply to;

- Obsolete goods sold at auction, second-hand goods and prototype goods.
- Consumable Parts for MIG, TIG, Plasma welding, Plasma cutting and Oxy fuel torches, O-rings, fuses, filters or other parts that fail due to normal wear.

Note:

- * No employee, agent, or representative of CIGWELD is authorized to change this warranty in any way or grant any other warranty, and CIGWELD shall not be bound by any such attempt. Correction of non-conformities, in the manner and time provided herein, constitutes fulfilment of CIGWELD's obligations to purchaser with respect to the product.
- * This warranty is void, and seller bears no liability hereunder, if purchaser used replacement parts or accessories which, in CIGWELD's sole judgment, impaired the safety or performance of any CIGWELD product and if the unit is altered or serviced by an unauthorised CIGWELD Service Provider. Purchaser's rights under this warranty are void if the product is sold to purchaser by unauthorized persons.

This Page Intentionally Blank

CIGWELD Pty Ltd CIGWELD An ESAB Brand

71 Gower Street, Preston VIC 3072 Australia

Customer Care:

Tel: 1300 654 674 | Fax: 03 9474 7391 Email: enquiries@cigweld.com.au

International Enquiries

Tel: +61 3 9474 7508 | Fax: +61 3 9474 7488

Singapore -ESAB Asia Pacific 38 Joo Koon Circle 629063 Singapore

Tel: +65 6861 4322

Malaysia -No 14 Jalan Teknologi 3/1 Selangor Science Park 1 Kota Damansara, 47810 Petaling Jaya Selangor Darul Ehsan Malaysia

Tel: 60 3 6145 0995 Fax: 60 3 6145 0585

Indonesia -

JI. Pulogadung No. 45 Kawasan Industri Pulogadung Jakarta, 13930 Indonesia

Tel: +62 21 460 0188 Fax: +62 21 461 2929